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Abstract

Any Cremona transformation of the three-dimensional projective space P3 that stabilizes a
smooth quartic surface S ⊂ P3 induces an automorphism of S. The converse problem, deter-
mining which automorphisms of S are restrictions of Cremona transformations of the ambient
P3, remains an open question.

In this thesis, we provide a complete solution to this problem for quartic surfaces with Picard
rank two. Building upon the theory of K3 surfaces and the Sarkisov program, we carry out a
detailed analysis of the geometry of smooth quartic surfaces with Picard rank two, focusing on
the restrictions imposed on the Picard lattice by the possible automorphisms and by Sarkisov
links initiated from the blowup of curves on the quartics.

Keywords: Quartic K3 surfaces, Automorphisms, Cremona transformations, Calabi-Yau pairs, Sarkisov pro-

gram, Lattices.
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Resumo

Qualquer transformação de Cremona de P3 que estabilize uma superfície quártica suave S ⊂ P3

induz um automorfismo em S. O problema reverso, de determinar quais automorfismos de
S são restrições de transformações de Cremona do espaço ambiente P3, continua sendo uma
questão em aberto.

Nesta tese, fornecemos uma solução completa para este problema para superfícies quárticas
com posto de Picard igual a dois. Com base na teoria das superfícies K3 e no programa de
Sarkisov, realizamos uma análise detalhada da geometria das superfícies quárticas suaves com
posto de Picard dois, concentrando-nos nas restrições impostas ao reticulado de Picard pelos
possíveis automorfismos e pelos links de Sarkisov iniciados a partir do blowup de curvas sobre
as quárticas.

Palavras-chave: Superfícies K3 quárticas, Automorfismos, Transformações de Cremona, Pares de Calabi-Yau,
Programa de Sarkisov, Reticulados.
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Chapter 1

Introduction

In this thesis, we delve into the theory of K3 surfaces and the Sarkisov program to tackle the problem: “which
automorphisms of a smooth quartic surface S ⊂ P3 are restrictions of Cremona transformations of P3” (see
Problem 1 for more details). These areas form a cornerstone in the broader purpose of algebraic geometry:
classifying projective varieties.

Birational geometry, a key area in algebraic geometry, investigates when two varieties are birationally equivalent,
i.e. they are isomorphic outside lower-dimensional closed subsets. The Minimal Model Program (MMP) aims
to identify the “simplest” representatives for each birational class of projective varieties, often termed minimal
models. This program simplifies the birational classification of projective varieties by focusing the study on
the resulting outputs. In the one-dimensional case, every complex algebraic curve is known to be birationally
equivalent to a unique smooth projective curve, which are classified by their genus. The Italian school resolved
the case of algebraic surfaces, proving that every algebraic surface is birationally equivalent to a smooth projec-
tive surface. Minimal models of smooth projective surfaces can be constructed using Castelnuovo’s contraction
theorem, while the Enriques classification organizes minimal surfaces into eight distinct classes based on their
Kodaira dimension and numerical birational invariants. Among these, K3 surfaces belong to the four classes
with Kodaira dimension zero.

A smooth complex projective surface S is a K3 surface if it has irregularity h1(S,OS) = 0 and trivial canonical
divisor KS ∼ OS . Consequently, S admits a unique (up to scalar) nowhere-vanishing holomorphic 2-form ωS .
Notable examples of K3 surfaces include smooth quartic surfaces in P3 and smooth double covers of P2 branched
along smooth sextics.

The second cohomology group H2(S,Z) of a K3 surface S possesses both a lattice and a Hodge structure, with
the latter determined by its period line H2,0(S) = CωS . According to Kodaira, all complex K3 surfaces are
diffeomorphic and share an isometric cohomology group H2(S,Z). Thus, K3 surfaces are distinguished by their
complex structures or, equivalently, their period lines. The Weak Torelli Theorem asserts that isometric Hodge
structures of two K3 surfaces imply isomorphic surfaces. Additionally, if the ample cones are also identified
by the same isometry φ, the Global Torelli Theorem asserts that the isomorphism between them is uniquely
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determined by φ.

This interplay between K3 surfaces, lattices, and Hodge structures is profoundly influential. Geometric prop-
erties and automorphisms of K3 surfaces can be studied using lattice theory. The automorphism group Aut(S)

of a K3 surface S is discrete and often infinite. Automorphisms are categorized as symplectic or non-symplectic
based on their action on the 2-form ωS . Symplectic automorphisms act trivially on ωS , while non-symplectic
ones do not. These concepts, introduced by Nikulin [Nik79], are pivotal in understanding how automorphisms
influence the lattice structure of H2(S,Z). Building on this framework, numerous researchers have classified
finite-order automorphisms and explored K3 surfaces admitting such structures. Key contributions to this field
include [Nik83, Muk88, OZ98, MO98, AS08, OZ11, Tak11, AST11, GS13].

The Picard group Pic(S) of a K3 surface S also has a lattice structure and can be viewed as a sublattice of
H2(S,Z). Isometries of H2(S,Z) that preserve its Hodge structure correspond to isometries of Pic(S) that
extend appropriately to H2(S,Z) under a Gluing condition. By the Global Torelli Theorem and results of
Nikulin [Nik83], the finite index subgroup Aut±(S) of Aut(S) consisting of symplectic and anti-symplectic
automorphisms (the latter are automorphisms acting as − id on ωS) can be identified with isometries of Pic(S)
that preserves the ample cone and extend to H2(S,Z) acting as ± id on ωS .

The complexity of the classification problem increases in higher dimensions and its development requires a
modern version of the MMP. In dimension three, it was completed by Mori [Mor88], and more recently, Birkar,
Cascini, Hacon, and McKernan [BCHM10] achieved a major breakthrough in higher dimensions. Key new
ideas and techniques introduced in higher dimensions include the allowance of certain singularities and small
modifications of varieties, such as flips, flops and antiflips. One of the two classes of outcomes of the MMP
consists of Mori fiber spaces (MFS), which emerge as the program’s end product for uniruled varieties. However,
the outputs of the MMP depend on specific choices, which makes it important to study birational maps between
these outputs within the same birational class. For MFS, the Sarkisov program offers an algorithmic approach
to decompose birational maps into simpler ones, called Sarkisov links. The Sarkisov program was developed by
Corti [Cor95] in dimension three, and latter extended to higher dimensions by Hacon and McKernan [HM13].
Later on, a version of the Sarkisov program for Calabi-Yau pairs was established by Corti and Kaloghiros
[CK16]: the volume preserving Sarkisov program. It allows us to factorize any volume preserving birational map
between Mori fibered Calabi-Yau pairs into volume preserving Sarkisov links.

The Sarkisov program has significantly contributed to understanding the birational self-maps of MFS, including
the Cremona group Bir(Pn), which is the group of birational self-maps of Pn. This approach facilitates the
study of the structure and the construction of special subgroups of Bir(Pn). Recent advancements in this area
can be found in works such as [LZ20, BLZ21, BSY22, Zik23a] and [ACM23].

1.1 On a problem of Gizatullin

It is natural to ask whether the automorphisms of a projective variety X ⊂ Pn+1 can be expressed as restrictions
of automorphisms of the ambient space Pn+1. In this case, the automorphisms of the variety X can be expressed
in coordinates, helping their description and the study of the geometry of X. Matsumura and Monsky [MM64]
and Chang [Cha78], demonstrated that for smooth hypersurfaces X ⊂ Pn+1 of degree d, every automorphism
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of X is induced by an automorphism of Pn+1, except in the cases where (n, d) = (1, 3) or (2, 4).

In the exceptional case (n, d) = (1, 3), corresponding to smooth elliptic curves C ⊂ P2, the automorphisms of C
that are restrictions of automorphisms of P2 form a finite subgroup within the infinite group Aut(C) = C⋊Zm,
where m ∈ {2, 4, 6}. However, every automorphism of C can still be expressed as the restriction of a birational
self-map of P2 [Ogu12, Theorem 2.2]. The other exceptional case, (n, d) = (2, 4), involves smooth quartic
surfaces S ⊂ P3. Here, the automorphism group Aut(S) is discrete and often infinite, as S is a K3 surface.
Nonetheless, the subgroup of automorphisms induced by regular maps of P3 is finite. This naturally leads to
the question of whether a similar result applies to quartic surfaces. This question lies within the context of the
following problem posed by Gizatullin.

Problem 1 (Gizatullin). Let S ⊂ P3 be a smooth quartic surface and f ∈ Aut(S) be an non-trivial automor-
phism of S. Does there exist a Cremona transformation φ of P3 which stabilizes S, i.e. φ(S) = S, and such
that φ|S = f?

When S ⊂ P3 is a smooth quartic surface with Picard rank ρ(S) = 1, this problem is trivially solved since
Aut(S) = {1} (see Proposition 5.0.1). When the surface has higher Picard rank, Gizatullin’s problem was first
addressed by Oguiso who constructed the following two examples [Ogu12, Ogu13]. The first one is a smooth
quartic surface S ⊂ P3 with ρ(S) = 2, Aut(S) ∼= Z and no non-trivial automorphism is induced by a Cremona
transformation of P3 (see Example 5.0.2). The second one is a smooth quartic surface S ⊂ P3 with ρ(S) = 3,
Aut(S) ∼= Z2 ∗ Z2 ∗ Z2 and every automorphism is realized as birational maps of the ambient space P3 (see
Example 5.0.3). Based on these examples, a natural question posed by Oguiso in [Ogu12] is:

Problem 2 (Oguiso). Is every automorphism of finite order of any smooth quartic surface S ⊂ P3 induced by
a Cremona transformation of P3?

This thesis builds upon Oguiso’s approach by employing results from the theory of K3 surfaces and the Sarkisov
program to address Problem 1. Specifically, the solution to Gizatullin’s problem is divided into two main
theorems below, which were derived in collaboration with Carolina Araujo, Ana Quedo, and Sokratis Zikas
[PQ25, APZ24]. The statements of these results have been slightly refined compared to their original form in
the corresponding papers.

In his first example, Oguiso relied on a result from Takahashi (see Proposition 4.1.4), which is a consequence
of the Sarkisov program. This result asserts that the existence of a non-regular Cremona transformation of
P3 stabilizing a smooth quartic surface S forces the existence of a curve C ⊂ S of degree < 16 that is not a
complete intersection. In [PQ25], we exploit this idea and prove that when the quartic surface S ⊂ P3 has
Picard rank ρ(S) = 2, the existence of such curves can be inferred from the lattice Pic(S). More precisely, we
observe that the structure of the lattice Pic(S) is determined by the discriminant r(S) of S, which is defined
as the opposite of the determinant of a matrix associated to the intersection product on S. We then prove that
when r(S) > 233, S does not contain such curves. As a result, the automorphisms of the quartic surface could,
in principle, only be induced by regular maps of P3.

On the other hand, Matsumura and Monsky proved that any automorphism of S induced by an automorphism
of P3 must have finite order (see [MM64, Theorem 1], [Ogu13, Theorem 3.2]). Moreover, automorphisms of K3

3



surfaces with finite order have been extensively studied through their action on the second cohomology group,
as previously mentioned. In particular, we apply the classification by Nikulin [Nik83] for involutions and by
Artebani, Sarti, and Taki [AST11] for automorphisms of higher order, to prove that any non-trivial finite order
automorphism of a smooth quartic surface S ⊂ P3 with Picard rank two is an involution uniquely associated
with a double cover S −! P2. Therefore, when r(S) > 233, no non-trivial automorphisms can be induced by
regular maps of P3.

This first analysis suggests that a classification for Gizatullin’s problem is achievable in the case of Picard rank
two.

Theorem A (Theorem 5.1.8). Let S ⊂ P3 be a smooth quartic surface with Picard rank ρ(S) = 2 and
discriminant r(S) > 233. Then the only automorphism of S arising from a Cremona transformation of P3 is
the identity.

This result generalizes the first example of Oguiso, since the surfaces in that example have discriminant greater
than 233 (see Example 5.0.2). It also provides the first negative answer to Problem 2 (see 5.1.1). The full
analysis of Gizatullin’s problem for Picard rank 2 is completed in [APZ24], where we present our second main
theorem. This result leads to both positive and negative answers to Problem 1. For the notion of Aut-general,
refer to Definition 3.4.9.

Theorem B (Proposition 5.2.3 + Theorem 5.2.13). Let S ⊂ P3 be a smooth quartic surface with Picard rank
ρ(S) = 2.

(1) If r(S) > 57 or r(S) = 52, then the only automorphism of S arising from a Cremona transformation of
P3 is the identity.

(2) If r(S) ≤ 57, r(S) ̸= 52 and S is Aut-general, then every automorphism of S is induced by a Cremona
transformation of P3. Moreover, one of the following holds.

• r(S) ∈ {9, 12, 16, 24, 25, 33, 36, 44, 49, 57} and Aut(S) = {1};

• r(S) ∈ {17, 41} and Aut(S) ∼= Z2;

• r(S) ∈ {28, 56} and Aut(S) ∼= Z2 ∗ Z2; or

• r(S) ∈ {20, 32, 40, 48} and Aut(S) ∼= Z.

This second part focuses on the Sarkisov decomposition of non-regular Cremona transformations of P3 stabilizing
quartics. The volume-preserving version is particularly relevant, as the pair (P3, S), where S ⊂ P3 is a smooth
quartic surface, is a Mori fiber Calabi-Yau pair and every Cremona transformation stabilizing S is volume
preserving. This version imposes strong conditions on the first Sarkisov link in any volume-preserving Sarkisov
decomposition of a non-regular Cremona transformation stabilizing S. Specifically, these first Sarkisov links
begin with the blowup of P3 along a curve C ⊂ S.

Sarkisov links starting from P3 are not fully classified. Some results in this direction can be found in [CM13] and
[BL12], which classify curves in P3 such that their blowup X is a weak Fano variety and gives rise to Sarkisov
links. They provide a list of pairs (g, d) of genus g and degree d of such curves. An interesting property is that
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all of these curves are contained in quartic surfaces [BL12, Proposition 2.8]. A first result in the case where X

is not weak Fano appears in [Zik23b], where smooth curves in P3 lying in a smooth cubic surface whose blowup
generates Sarkisov links are classified.

For the purpose of Gizatullin’s problem, we analyze the blowup of curves C in P3, which are contained in a
smooth quartic surface S with ρ(S) = 2. We prove that any curve C for which its blowup X ! P3 initiates
a Sarkisov link satisfies that X is weak Fano, and the pair (g, d) appears in the list of Blanc and Lamy. The
existence of such curves C ⊂ S with certain (g, d) yields restrictions on Pic(S) and hence on the discriminant
r(S), allowing us to conclude the first part of Theorem B. Furthermore, the value of (g, d) alone is not sufficient
for C to initiate a Sarkisov link and ensure that X is weak Fano. According to Blanc and Lamy, additional
conditions on C and on the anticanonical morphism on X are required. We reformulate these conditions to
make them easily verifiable from the Picard lattice Pic(S).

By studying the isometries of Pic(S) through the classical theory of binary quadratic forms, Galluzzi, Lombardo
and Peters [GLP10] proved that when S is a K3 surface with Picard rank two, the finite index subgroup
Aut±(S) ⊂ Aut(S) has four possible structures: {1}, Z2, Z or Z2 ∗Z2. Each case is determined by the existence
of certain numerical classes in Pic(S). Furthermore, Lee [Lee23] described the action of Aut±(S) on Pic(S),
which allows us to determine its generators. Under the assumption in part two of Theorem B, where S is
Aut-general, Aut±(S) = Aut(S), allowing us to compute the automorphism group and find its generators for
each discriminant.

After describing the action of the generators of Aut(S) on Pic(S) when r(S) ≤ 57 and r(S) ̸= 52, we proceed
to construct Cremona transformations realizing them. This is done by exploring the Sarkisov links initiated by
blowing up certain curves C ⊂ S.

The thesis is structured as follows: In Chapter 2, we present some preliminaries, including notions from Lattice
Theory, standard results on Intersection Theory, and various cones of divisors. We also provide an overview
of the Minimal Model Program. In Chapter 3, we discuss fundamental results about K3 surfaces and their
automorphisms, particularly focusing on the case of K3 surfaces with Picard rank two. In Chapter 4, we
introduce the geometry of log Calabi-Yau pairs and the volume-preserving version of the Sarkisov Program,
exploring the Sarkisov links initiated by the blowup of curves lying in smooth quartics, especially for the case of
Picard rank two. In Chapter 5, we apply the theory of K3 surfaces and their automorphisms to the specific case
of quartic surfaces with Picard rank two, proving Theorem A and Theorem B, and providing a counterexample
to Problem 2. Finally, in Chapter 6, we discuss open questions arising from this work.
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Chapter 2

Preliminaries

This chapter provides a concise introduction to the theory of lattices, algebraic geometry, intersection theory,
and the Minimal Model Program. We present fundamental definitions and key results, providing proofs or
references as needed, to lay the groundwork for subsequent discussions.

2.1 Background on lattices

Lattices are central to the theory of K3 surfaces, playing a crucial role in encoding both their algebraic and
geometric properties. By linking topology, algebra, and complex geometry, lattices provide a foundational
framework for understanding automorphisms, moduli spaces, divisors, and special structures on K3 surfaces.
In this section, we introduce the theory of lattices, emphasizing their fundamental definitions and key results.
We also discuss sublattices and isometries. For a more detailed and rigorous introduction to lattices, we refer
to [Huy16, Chapter 14].

A lattice L is a free Z-module of finite rank, equipped with a symmetric bilinear form bL : L × L −! Z. For
K = Q,R or C, we denote the K-vector space LK := L ⊗Z K. The bilinear form bL extends naturally to LK

and is denoted by the same symbol. The discriminant of L is defined as disc(L) := det(Q), where Q is the
matrix representation of bL with respect to any basis of L. If disc(L) ̸= 0, the lattice L is called non-degenerate,
and if disc(L) = ±1, it is called unimodular. The lattice L is said to be even if bL(x, x) ∈ 2Z for any x ∈ L.
The signature of a non-degenerate lattice L is the pair (l+, l−), where l+ (resp., l−) denotes the multiplicity of
the eigenvalue 1 (resp., −1) for the quadratic form on LR.

From now on, let L be a non-degenerate even lattice. A sublattice of L is a Z-submodule L′ ⊂ L such that
the restriction of bL to L′ × L′ is non-degenerate. A sublattice L′ is called primitive if the quotient L/L′ is
torsion-free. The dual lattice of L is defined as

L∨ = HomZ(L,Z) ∼=
{
x ∈ L⊗Z Q

∣∣∀y ∈ L , bL(x, y) ∈ Z
}
.

There is a natural embedding of L in L∨ given by x 7! bL(x, ·). The discriminant group of L is the quotient
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A(L) = L∨/L. This is a finite group, and the minimal number of generators is denoted by l(A(L)). The
Q-extension of bL to L∨ is a symmetric bilinear form L∨ × L∨ −! Q/Z, which in turn induces a symmetric
bilinear form bA on A(L):

bA(x+ L, y + L) = bL(x, y) mod Z, for all x, y ∈ L∨.

The quadratic form of L, qL : A(L) −! Q/2Z, is defined as

qL(x+ L) = bL(x, x) mod 2Z, for all x ∈ L∨.

Proposition 2.1.1. Let L be a non-degenerate lattice. Then

1. The index of L in L∨ is |disc(L)|, i.e., A(L) is a finite abelian group of order |disc(L)|.

2. l(A(L)) ≤ rank(L).

3. If L′ is a sublattice of L with same rank, then |disc(L′)| = [L : L′]2 · | disc(L)|, and L′ has the same
signature as L.

Proof. We refer to [BHPVdV04, Lemma I.2.1] for the proof of (3). In order to prove (1) and (2), let {ei} be a
basis of L and QL be a matrix representing the bilinear form with respect to this basis. Define {e′i}, the dual
basis for L∨, i.e., e′i(ei) = δij , where δij = 1 if i = j, and δij = 0 otherwise. One can verify that the columns of
Q−1 correspond exactly to the dual basis {e′i}. Consequently, the matrix representing the bilinear form on L∨

with respect to this dual basis is QL∨ = Q−1QQ−1 = Q−1. Therefore, disc(L∨) = 1/disc(L). The result in (1)
follows by applying (3) to L ⊂ L∨. Similarly, (2) follows from the observation that rank(L) = rank(L′) and the
classes of the generators e′i generate A(L).

The following are a few classical examples of lattices.

Example 2.1.2. Any lattice L of rank one can be expressed as ⟨m⟩, where m ∈ Z \ {0}. In this case, L is
isomorphic to Z and the bilinear form is given by b(x, y) = mxy. This lattice has discriminant disc(⟨m⟩) = m,
discriminant group A(⟨m⟩) = Zm, and signature (1) if m > 0, or (−1) if m < 0.

Example 2.1.3 (Hyperbolic plane). We denote by U the lattice of rank two, generated by elements e, f ∈ U

such that the bilinear form is given by (
0 1

1 0

)
.

This is an even unimodular lattice of signature (1, 1), discriminant disc(U) = −1 and trivial discriminant group
A(U).

Example 2.1.4 (Rescaling). Let L be an even, non-degenerate lattice of signature (l+, l−), and let m be a
non-zero integer. We define the rescaling lattice L(m) as follows. As Z-module, it is the same L, but the
bilinear form bL(m) is given by bL(m)(x, y) = mbL(x, y), for all x, y ∈ L. The lattice L(m) has same rank as
L, discriminant disc(L(m)) = mrank(L) disc(L), and signature (l+, l−) or (l−, l+) depending on whether m is
positive or not, respectively.
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Some special cases are the following. The rank one lattice ⟨m⟩ is a rescaling of the lattice ⟨1⟩, specifically:
⟨m⟩ = ⟨1⟩(m). Moreover, the hyperbolic plane U , when rescaled by m, forms the lattice U(m). It has
discriminant m2 and discriminant group Zm × Zm.

Example 2.1.5 (E8 lattice). It is the lattice of rank 8, with intersection product given by the following matrix

2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 −1 0 0 0

0 0 −1 2 0 0 0 0

0 0 −1 0 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


.

The lattice E8 is an even unimodular, with discriminant disc(E8) = 1 and signature (8, 0).

Example 2.1.6 (Direct sum of lattices). Let L and M be lattices with bilinear forms bL and bM , and signatures
(l+, l−) and (m+ +m−), respectively. We define the lattice L⊕M as follows. As a group, it is the direct sum
L×M of L and M , and its bilinear form is given by

bL⊕M ((x1, y1), (x2, y2)) = bL(x1, x2) + bM (y1, y2).

If QL and QM are matrices representing bL and bM , respectively. Then, bL⊕M is representing by the matrix

QL⊕M =

(
QL 0

0 QM

)
.

Therefore, lattice L⊕M has rank rank(L)+ rank(M), signature (l++m+, l−+m−) and discriminant disc(L⊕
M) = disc(L) · disc(M). Moreover, there are natural embedding of L and M into L⊕M defined by l 7! (l, 0)

and m 7! (0,m), respectively. Theses embeddings preserve the bilinear forms on L, M and L⊕M .

Example 2.1.7 (K3 lattice). The K3-lattice is defined as

ΛK3 := U⊕3 ⊕ E8(−1)⊕2 = U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1).

By Examples 2.1.6 and 2.1.4, this is an even unimodular lattice of signature (3, 19) and discriminant −1.

Let L be an even unimodular lattice. By Proposition 2.1.1, the discriminant group A(L) of L is trivial, implying
L = L∨. Let L1 ⊂ L be a primitive sublattice and define the orthogonal complement of L1 in L as the primitive
sublattice L⊥

1 = {x ∈ L|bL(x, y) = 0 ∀y ∈ L1}.

Proposition 2.1.8. Let L be a unimodular lattice, L1 be a primitive sublattice and L2 = L⊥
1 . Then

1. L1 ⊕ L2 is a sublattice of L with the same rank as L.

2. There is a natural group identification

L/(L1 ⊕ L2) ∼= A(L1) ∼= A(L2). (2.1)
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3. The index of L1 ⊕ L2 in L is given by [L : L1 ⊕ L2] = |disc(L1)| = |disc(L2)|.

Proof. Clearly, L1 ⊕L2 is a sublattice of L. To see that rank(L) = rank(L1)+ rank(L2), it suffices to consider
the Q-vector spaces (L1 ⊕L2)Q = (L1)Q ⊕ (L2)Q and LQ and observe that they have the same dimension. This
follows from the fact that the bilinear form bL induces a non-degenerate inner product on LQ. This proves (1).

On the other hand, using the identification HomZ(L,Z) ∼= L∨ for any lattice L, we construct the following
homomorphism

L ↪! L∨ ∼= HomZ(L,Z) ! HomZ(L1,Z) ∼= L∨
1 ! A(L1),

where the map L∨ ! L∨
1 is surjective since L1 ⊂ L is primitive, and the kernel is L1 ⊕ L2. Similarly, we have

a map L ! A(L2) with same kernel. This provides the desired isomorphisms in (2.1). Finally, assertion (3)
follows from (1) and (2).

Let L and M be lattices of the same rank n. An isometry of L to M is an isomorphism φ : L ! M preserving
the bilinear forms. More precisely, bM (φ(x), φ(y)) = bL(x, y) for every x, y ∈ L, and similarly with the inverse
map φ−1. If {ei} and {e′i} are bases of the lattices L and M , denote by QL and QM the matrices that represent
the respective bilinear forms with respect to these bases. Any isometry φ : L ! M can also be represented by
a matrix, which we denote by the same symbol, by abuse of notation: φ = (aij)1≤i,j≤n where the entries are
given by the relation φ(ej) =

∑
aije

′
i. Furthermore, the matrix satisfies QL = φT ·QM · φ.

If M = L, we simply say that φ is an isometry of L. The orthogonal group of L, denoted by O(L), is the group
of all isometries of L. Any isometry φ ∈ O(L) can be extended by linearity to an isometry of the dual lattice
L∨. This extended isometry respects the pairing in L∨ and, therefore, descends naturally to an automorphism
φ of the discriminant group A(L) = L∨/L.

The following is a necessary and sufficient condition to determine whether an isometry of a lattice acts trivially
(up to sign) on the discriminant group.

Lemma 2.1.9. Let L be an even, non-degenerate lattice and φ ∈ O(L) be an isometry. Denote by QL a matrix
representing the bilinear form bL, associated to a basis. Then, φ = id (resp. φ = − id) on A(L) if and only if
(φ− id) ∗Q−1

L (resp. (φ+ id) ∗Q−1
L ) is an integer matrix.

Proof. Recall that the columns of the matrix Q−1
L form a basis of the dual lattice L∨. Furthermore, since A(L)

is defined as the quotient L∨/L, any isometry φ of L acts as id on A(L) if and only if the image of each such
generator under φ − id belongs to L. In other words, this occurs if and only if if the images of the generators
under φ− id have integer coefficients when expressed in the basis of L. Similarly, φ acts as − id on A(L) if and
only if the image of each generator under φ+ id belongs to L.

When φ is an isometry of a unimodular lattice L preserving a sublattice L1, the restriction φL1 = φ|L1 is an
isometry of L1. Moreover, φ preserves the orthogonal complement L2 of L1, and so, the restriction φL2 = φ|L2

is an isometry of L2. In fact, these isometries satisfy the following nice property.
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Corollary 2.1.10. Let L be an even unimodular lattice, L1 be a primitive sublattice and L2 = L⊥
1 . Suppose

that φ ∈ O(L) preserves both L1 and L2, so the restriction φLi
= φ|Li

to Li is an element of O(Li) for i = 1, 2.
Then, φL1 = φL2 under the identification A(L1) ∼= A(L2) of (2.1).

Proof. Denote by α : A(L1)
∼
! A(L2) the isomorphism in (2.1). The conjugation by α defines a bijection

between Aut(A(L1)) and Aut(A(L2)). Consequently, the statement follows directly.

The following proposition gives the converse. A proof of this can be found in [Nik80, Theorem 1.6.1, Corollary
1.5.2].

Proposition 2.1.11 (Gluing isometries). Let L,L1 and L2 be as in Corollary 2.1.10, and let φL1 , φL2 be
isometries of L1 and L2, respectively. If φL1

= φL2
under the identification A(L1) ∼= A(L2) of (2.1), then there

exists an isometry φ on L whose restrictions to L1 and L2 are φL1
and φL2

, respectively.

Denote by O(L,L1) ⊂ O(L) the group of isometries of L preserving L1. As a consequence of Corollary 2.1.10
and Proposition 2.1.11, we have the following identification:

O(L,L1) ∼= {(φL1
, φL2

) ∈ O(L1)×O(L2)|φL1 = φL2 under the identification A(L1) ∼= A(L2)} . (2.2)

Remark 2.1.12. An isometry φL1
of a primitive sublattice L1 ⊂ L whose action on A(L1) is φL1

= ± id can
be naturally extended to L. Indeed, If φL1

= id (resp. φL1
= − id), we define an isometry of L2 = L⊥

1 as
φL2

= id (resp. φL2
= − id). Since their actions coincide on the discriminant groups, the gluing of φL1

and
φL2 gives an isometry of L.

Definition 2.1.13 (Invariant and co-invariant lattices). Let φ be an isometry of a unimodular lattice L. The
invariant lattice Lφ and the co-invariant lattice Lφ are defined as the lattices:

Lφ := {x ∈ L|φ(x) = x} and Lφ := (Lφ)⊥.

Lemma 2.1.14. Let φ be an isometry of a lattice L of finite order n. The following properties hold:

1. Both Lφ and Lφ are primitive sublattices of L.

2. Lφ contains the set {x+ φ(x) + · · ·+ φn−1(x)|x ∈ L}.

3. Lφ contains the set {x− φi(x)|x ∈ L, 0 ≤ i < n}.

4. L/(Lφ ⊕ Lφ) is of n-torsion.

Proof. Let x ∈ L such kx ∈ Lφ for some integer k ≥ 1. Since kx = φ(kx) = kφ(x), we deduce that
k(x − φx) = 0. Thus, x − φ(x) = 0, which implies x ∈ Lφ. Therefore, Lφ is a primitive sublattice of L, and
consequently, Lφ is also a primitive sublattice. This is (1). The proof of (2) follows directly from the fact that
φ has order n.
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Now, let x ∈ L and y ∈ Lφ. Observe that bL(x, y) = bL(φ
i(x), φi(y)) = bL(φ

i(x), y) for any 0 ≤ i < n. Thus,
bL(x− φi(x), y) = 0, and so, we get (3). Finally, to prove (4), let x ∈ L. Then,

nx =

n−1∑
i=0

φi(x) +

n−1∑
i=0

(x− φi(x)) ∈ Lφ ⊕ Lφ.

We point out that if φ is the trivial isometry, i.e., φ(x) = x for all x ∈ L, then Lφ = L and Lφ = ∅.

2.1.1 Lattices of rank two In this subsection, we focus on lattices of rank two, with special
attention given to hyperbolic lattices of rank two. Hyperbolic lattices arise in the study of K3 surfaces, partic-
ularly in relation to the Picard lattice of a K3 surface, where such lattices may correspond to the Picard group
of the surface.

Definition 2.1.15 (Hyperbolic lattice). A hyperbolic lattice is an even, non-degenerate lattice L of rank(L) > 1

and signature (1, rank(L) − 1). By abuse of language, a lattice L of rank one with signature (1) is also called
hyperbolic.

Classic examples of hyperbolic lattices of rank two are the lattices U and U(m) with m > 0.

For the remainder of this section, we will establish the following notation.

Let L be a hyperbolic lattice of rank two and {e1, e2} be a basis. In this basis, the bilinear form can be
represented by a matrix

QL =

(
2a b

b 2c

)
, (2.3)

where a, b, c ∈ Z. Since L has signature (1, 1), the discriminant of L is negative, i.e., disc(L) = 4ac − b2 < 0.
For any two elements x, y ∈ L, we use the conventional notation x · y := bL(x, y) and x2 := bL(x, x). The
following lemma provides a criterion, based on disc(L), for determining whether the lattice contains elements
with a specific self-intersection.

Lemma 2.1.16. Let L = Ze1⊕Ze2 be a hyperbolic lattice with bilinear form given by the matrix QL in (2.3).
Let r := −disc(L) > 0 and k be an integer number. Then, the following assertions hold:

1. For any x = me1 + ne2 in L we have that 2ax2 = (x · e1)2 − rn2.

2. There exist elements x ∈ L such that x2 = 0 if and only if r is a square.

3. If the Generalized Pell equation u2 − rv2 = 4ak has no integer solutions, then there exist no an element
x ∈ L such that x2 = 2k.

Proof. Let x = me1 + ne2 in L, for some n,m ∈ Z, with x2 = 2k. So, we can write

4ak = 2ax2 = 4an2 + 4abnm+ 4acm2 = 4an2 + 4abnm+ 4acm2 + b2m2 − b2m2 = (x · e1)2 − rm2.
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This gives us (1). Moreover, we see that x2 = 0 if and only if r is a square number. Finally, we obtain assertion
(3) by contraposition.

An element x ∈ L is called primitive if the rank one lattice ⟨x⟩ is a primitive sublattice of L. Equivalently, x is
primitive if there is no z ∈ L such that x = kz, for some integer k > 1. The following lemma guarantees that
we can extend {x} to a basis of L.

Lemma 2.1.17. Let L be a hyperbolic lattice of rank two, and let x ∈ L be such that x2 = 2a. If there is no
integer k > 1 such that k2 divides a, then x is a primitive element, and we can write L = Zx ⊕ Zw for some
element w. In particular, there exist some b, c ∈ Z such that the intersection product is given by the following
matrix (

2a b

b 2c

)
. (2.4)

Proof. We observe that x is a primitive element of the lattice; otherwise, there would exist an element z ∈ L

and an integer k > 1 such that x = kz. Thus, k2z2 = 2a, which implies that k2 divides a since z2 is even.

Therefore, we can write x = αe1+βe2, for any basis {e1, e2} of L, where gcd(α, β) = 1. Thus, there are integers
γ and δ such that δα+ γβ = 1. Let y := −γe1 + δe2. The matrix

A =

(
α β

−γ δ

)

is invertible over Z with determinant 1. Therefore, A is an isometry of L sending the basis {e1, e2} to {x, y}.
After this change of basis, the intersection matrix is the desired one.

Now we stablish a condition on whether the discriminant of L determines the lattice.

Proposition 2.1.18. Let a be an integer satisfying the condition

n2 ≡ m2 mod 4a implies n−m ≡ 0 mod 2a or n+m ≡ 0 mod 2a. (2.5)

Then, for any two hyperbolic lattices L and L′ of rank two such that their intersection matrices are given by

QL =

(
2a b

b 2c

)
and QL′ =

(
2a b′

b′ 2c′

)
, (2.6)

L is isometric to L′ if and only if disc(L) = disc(L′).

Proof. One direction follows since any two isometric lattices have same discriminant. For the other direction,
notice that from (2.5), b−b

′

2a ∈ Z or b+b′

2a ∈ Z. Define the map ϕ : L ! L′ by the matrix

ϕ =

(
1 b∓b′

2a

0 ±1

)
.

That is, if {e1, e2} and {e′1, e′2} are bases of L and L′, respectively, such that the bilinear forms are represented
by QL and QL′ , then e1 7! e′1 and e2 7! b∓b′

2a e′1 ± e′2. This is an isometry from L to L′. Indeed, from
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4ac− b2 = disc(L) = disc(L′) = 4ab′ − (b′)2 we can check that(
2a b

b 2c

)
=

(
1 0

b∓b′
2a ±1

)(
2a b′

b′ 2c′

)(
1 b∓b′

2a

0 ±1

)
.

Now, we investigate isometries of lattices of rank two.

Let L be a hyperbolic lattice of rank two, and let {e1, e2} be a basis such that the bilinear form is represented
by the matrix (2.3). We can always assume that c ̸= 0. Indeed, if a = 0 = c, then b ̸= 0, L ∼= U(b) and
{e1, e1 + e2} is a basis of L with (e1 + e2)

2 = 2b ̸= 0. Thus we do a basis change if necessary. If c = 0 and
a ̸= 0, we write QL in the basis {e2, e1}. Now, take an isometry φ ∈ O(L). With respect to the basis {e1, e2},
the associated matrix to φ has the following form

φ =

(
α β

γ δ

)
.

Since φ is an isometry, we have that φTQLφ = QL and so we obtain the equations

2aα2 + 2bαγ + 2cγ2 = 2a, (2.7)

2aαβ + bβγ + bαδ + 2cγδ = b, (2.8)

2aβ2 + 2bβδ + 2cδ2 = 2c. (2.9)

Lemma 2.1.19. Let φ ∈ O(L) be a non-trivial isometry of order two. Then, with respect to the basis {e1, e2},
either φ = − id, Lφ = {0} and Lφ = L, or φ has the form

φ =

(
α β

a
cβ − b

cα −α

)
,

where (α, β) is an integer solution of the quadratic equation

α2 − b

c
αβ +

a

c
β2 = 1. (2.10)

In this case, det(φ) = −1, and both Lφ and Lφ has rank one.

Proof. From φ2 = id we get the following equations

α2 + βγ = 1 = δ2 + βγ and β(α+ δ) = 0 = γ(α+ δ). (2.11)

If α + δ ̸= 0, we get β = 0 = γ which implies that α = δ = ±1. Therefore, φ = ± id. Clearly the invariant
lattice Lφ = L when φ = id. If φ = − id, by Lemma 2.1.14, Lφ contains elements of the form x − φ(x), for
every x ∈ L. Thus, 2x ∈ Lφ and so rank(Lφ) = rank(L). Then Lφ = L since Lφ is a primitive sublattice of L.

If α + δ = 0, δ = −α. In this case, γ = a
cβ − b

cα from (2.9) and (2.11). Moreover, the eigenvalues of φ are√
α2 + βγ = 1 and −

√
α2 + βγ = −1 and det(φ) = −1.
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Lemma 2.1.20. Let φ ∈ O(L) be a non-trivial isometry of order four. Then det(φ) = 1, Lφ = {0} and Lφ = L.

Proof. By assumption, the isometry φ satisfies that φ4 = id and φ2 ̸= id. Thus, we get the following equations

(α2 + βγ)2 + βγ(α+ δ)2 = 1 = (δ2 + βγ)2 + βγ(α+ δ)2 (2.12)

and
β(α+ δ)(α2 + 2βγ + δ2) = 0 = γ(α+ δ)(α2 + 2βγ + δ2). (2.13)

• If α+ δ ̸= 0,

– If α2 + 2βγ + δ2 ̸= 0, from (2.13), β = 0 = γ and then φ = ± id. This is not possible.

– If α2+2βγ+δ2 = 0, since det(ϕ) = αδ−βγ = ±1, we have that α2+2αδ+δ2 = ±2, which implies
that (α+ δ)2 = ±2. This is not possible.

• If α+ δ = 0, δ = −α. From (2.12), (α2 + βγ)2 = 1 and since φ2 ̸= id, α2 + βγ = −1. This implies that
det(φ) = 1. Moreover, to determine Lφ we look at the eigenvalues of φ, which are i and −i. Therefore
we have the desired result.

2.1.2 p-elementary lattices We end this section by introducing p-elementary lattices. As
highlighted in Lemma 2.1.14(4) and explored further in Section 3.3, these lattices play a key role in constructing
and understanding the automorphism groups of K3 surfaces. This is particularly significant for the classification
of K3 surfaces up to isometry.

Definition 2.1.21 (p-elementary lattice). Let L be a lattice and p a prime number. We say that L is p-
elementary if its discriminant group A(L) is isomorphic to (Zp)l(A(L)).

Example 2.1.22. Fix a prime p. The lattices ⟨1⟩ and ⟨p⟩ are the only lattices of rank one which are p-
elementary. The lattice U(p) is also a p-elementary lattice, as its discriminant group is isomorphic to Zp × Zp
(see Example 2.1.4). Similarly, U is p-elementary for any p prime, since it has trivial discriminant group.

In general, the lattices U and U(p) are not the only p-elementary lattices of rank two. We highlight the following
two examples.

Example 2.1.23. The even non-degenerate lattice ⟨2⟩⊕ ⟨−2⟩ has rank two and its intersection matrix is given
by (

2 0

0 −2

)
.

It is a 2-elementary lattice since its discriminant group is isomorphic to Z2 ⊕ Z2.

Example 2.1.24. The even non-degenerate lattice H5 of rank two with intersection matrix(
2 1

1 −2

)
,
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is a 5-elementary lattice since its discriminant group A(H5) is isomorphic to Z5.

Remark 2.1.25. Let L be a unimodular lattice and φ ∈ O(L) an isometry of order p. The invariant lattice
Lφ and co-invariant lattice Lφ are both p-elementary, by Lemma 2.1.14 and Proposition 2.1.8. In particular, if
rank(Lφ) = rank(L) or rank(Lφ) = rank(L), L is also a p-elementary lattice.

In this thesis, we are particularly interested in p-elementary hyperbolic lattices. The 2-elementary lattices were
classified by Nikulin in [Nik83, §4]. Here, we recall this classification for 2-elementary hyperbolic lattices of rank
≤ 2.

Lemma 2.1. Let L be a 2-elementary hyperbolic lattice of rank ≤ 2. If L has rank one, L is isomorphic to ⟨2⟩.
If L has rank two, it is isomorphic to one of the following lattices: U , U(2) or ⟨2⟩ ⊕ ⟨−2⟩.

2.2 Background on algebraic geometry

In this section we give some general definitions and results in algebraic and birational geometry. All varieties
are assumed to be projective and irreducible over the field of complex numbers C. By a curve we always mean
an irreducible and reduced curve.

2.2.1 Divisors, 1-cycles and intersection numbers We start by recalling briefly
basic definitions about divisors and intersection numbers. We refer to [Laz04, Section 1.1] and [Deb01, Chapter
1] for more details.

Let X be a normal projective variety, denote by KX the sheaf of rational functions and by OX the structure
sheaf of X. A Weil divisor on X is a formal finite sum of subvarieties of codimension 1 (called prime divisors)
with integer coefficients. These divisors form an abelian group, denoted by WDiv(X).

WDiv(X) =

{
m∑
i=1

aiYi|m ∈ N, ai ∈ Z, Yi ⊂ X subv. of codim. 1, for i = 1, ...,m

}
.

If D =
∑

aiYi is a Weil divisor, we call D effective if ai ≥ 0 for every i. Given a rational function f ∈ H0(X,K∗
X),

for every subvariety of codimension 1 Y we associate the integer νf (Y ) as follows: νf (Y ) = k > 0 if f vanishes
on Y to the order k; νf (Y ) = −k < 0 if f has a pole of order k on Y , and νf (Y ) = 0 otherwise. νf (Y ) is called
multiplicity of f at Y . Since νf (Y ) = 0 for all but finitely many Y , we define

div(f) =
∑

Y prime divisor

νf (Y )Y ∈ WDiv(X).

The divisors obtained in this way are called principal divisors. If f and g are rational functions of X, then
div(fg) = div(f) + div(g). It follows that principal divisors form a subgroup PDiv(X) of WDiv(X).

Two divisors D,D′ on X are linearly equivalent is D −D′ ∈ PDiv(X) is a principal divisor. We represent this
relation as D ∼ D′. The quotient of WDiv(X) by the subgroup of principal divisors is denoted by Cl(X) and
is called divisor class group.
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A Cartier divisor D is defined as a global section of the sheaf K∗
X/O∗

X , i.e., D is given by a collection of pairs
(Ui, fi) where (Ui) is an open cover of X, fi is an invertible element of KX(Ui) such that fi/fj is in O∗

X(Ui∩Uj).
Thus, a Cartier divisor is a locally principal Weil divisor. We denote by CDiv ⊂ WDiv the group of Cartier
divisors on X. Clearly, it contains all principal divisors.

Remark 2.2.1. On a smooth variety X, the notions of a Weil divisor and a Cartier divisor are equivalent,
WDiv(X) = CDiv.

Let π : Y ! X be a surjective morphism between varieties and D be a Cartier divisor on X given by (Ui, fi).
The pullback π∗D is a Cartier divisor on Y given by (π−1(Ui), fi ◦ π). If π is not surjective, the pullback of
Cartier divisor is not well-defined in general. However, its class under linear equivalence is well-defined. For
instance, if we consider a subvariety Y ⊂ X and the inclusion map ι : Y ↪! X, the pullback π∗D of a Cartier
divisor is exactly the restriction D|Y of D to Y and it makes sense if Y is not contained in the support of D.

For any Cartier divisor D, given by (Ui, fi), we associate to it a subsheaf OX(D) of KX , namely the OX -module
locally generated by 1/fi. Any invertible sheaf is obtain in this way and moreover, two divisors D and D′

are linearly equivalent if and only if the corresponding sheaves OX(D) and OX(D′) are isomorphic. A similar
association can be constructed, where Weil divisors correspond to rank one reflexive sheaves.

The Picard group Pic(X) of X is the group of isomorphism classes of line bundles over X. Using the identification
of Pic(X) with the group of isomorphism classes of invertible sheaves, we have the following identification

CDiv(X)/PDiv(X) ∼= Pic(X).

Definition 2.2.2 (Canonical divisor). Let X be a smooth projective variety of dimension n. Recall that ΩpX

denotes the sheaf of p-rational forms and the canonical sheaf ωX = ΩnX is the invertible sheaf of n-rational
form. The canonical divisor, denoted by KX , is defined as the equivalence class of the Cartier divisors such
that ωX ∼= OX(KX).

When X is a normal singular projective variety, the non-singular locus U ⊂ X is an open set whose complement
has codimension ≥ 2. Thus, U is a smooth quasi-projective variety and its canonical divisor KU can be obtained
as before. We write KU =

∑
aiDi, where Di ∈ WDiv(U) and ai ∈ Z. Hence, the canonical divisor on X can

be defined as
KX :=

∑
aiDi,

where Di is the closure of Di in X. Since codim(X \ U) ≥ 2, KX is the unique Weil divisor on X such that
KX |U = KU .

A 1-cycle C on X is a formal finite sum
∑

aiCi of curves Ci with integer coefficients ai. When ai ≥ 0 for any
coefficient in the sum, C is said to be an effective cycle.

We are interested in the intersection number of a Cartier divisor with a 1-cycle, and more generally, the
intersection of r Cartier divisors D1, . . . , Dr, where r ≥ dimX.

Definition/Proposition 2.2.3 (Intersection number). Let X be a normal projective variety of dimension n.
Let D1, . . . , Dr ∈ CDiv(X), with r ≥ dimX.
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1. The intersection number D1 · D2 · · ·Dr is an integer number that is zero whenever r > n. The map
(D1, . . . , Dn) 7! D1 · · ·Dn is multilinear, symmetric and take integral values.

2. The intersection number D1 · · ·Dn depends only on the linear equivalence classes of the Di’s.

3. Let Y ⊂ X be a subvariety of dimension s. Then D1 · · ·Ds · Y = D1|Y · · ·Ds|Y , where Di is replaced, if
necessary, with a linear equivalent Cartier divisor D′

i which does not contains Y in its support.

4. Let C be a curve and D ∈ CDiv(X). Then the intersection of D with the curve C is defined as
D · C := deg(η∗OX(D)|C), where η : C̃ ! C is the normalization of C. We extend the intersection of a
divisor with a 1-cycle by linearity.

When D1, D2, . . . , Dn are subvarieties of codimension 1 meeting properly in a finite number of points, D1 · · ·Dn

is the number of points D1 ∩ · · · ∩Dn counted with multiplicity. In the intersection theory, the intersection of r
Cartier divisors when r ≤ dimX, or more general, the intersection of any two subvarieties on X can be defined.
Intuitively, if A and B are subvarieties of X, the intersection A ·B of A with B is a subvariety of codimension
codim(A) + codim(B) (see [EH16, Chapter 1]).

Let π : Y ! X be a proper morphism beween varieties and C be a curve on Y . We define π∗C as follows

π∗C =

{
0, if C is contracted by π;

dπ(C), otherwise,

where d is the degree of the restriction C ! π(C) of π to C.

Proposition 2.2.4 (Projection formula). Let π : Y ! X be a morphism.

1. Assume that π is generically finite, proper, surjective and let D1, . . . , Dr ∈ CDiv(X), with r ≥ dimX.
Then π∗D1 · · ·π∗Dr = deg(π)D1 · · ·Dr.

2. Let D ∈ CDiv(X) and C be a curve on Y . Then π∗D · C = D · π∗C.

The intersection number is not well-defined for Weil divisors in general. However, when a multiple of a Weil
divisor is Cartier, we can extended naturally this notion.

Definition 2.2.5. A Weil divisor D on a projective variety X is called Q-Cartier if there exists a positive
integer m such that mD is a Cartier divisor. We say that X is Q-factorial if every Weil divisor on X is
Q-Cartier.

Thus, for Q-Cartier divisors D1, . . . , Dn on a projective variety X of dimension n such that D′
i = miDi is

Cartier, for some mi ∈ N, the intersection product is defined by

D1 · · ·Dn =
1

m1 · · ·mn
D′

1 · · ·D′
n ∈ Q.

Similarly, we define the intersection product of a Q-Cartier divisor with a curve.

We conclude this subsection with the following result, which will be useful in Section 4.3. It relates the Picard
group of a smooth three-dimensional variety to the Picard group of its blowup along a smooth curve, as well as
their intersection number.
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Proposition 2.2.6 ([IP99, Lemma 2.2.14]). Let X be a smooth threefold and C be a smooth curve on X.
Denote by π : X ′ ! X the blowup of X along C, by E the exceptional divisor and e a fiber of π|E . Then X ′ is
smooth and

1. Pic(X ′) = π∗ Pic(X)⊕ ZE.

2. E · e = −1 and E3 = −deg(NC/X).

3. E · π∗D = (D · C)e and π∗D · e = 0, for any divisor D on X.

4. E · π∗C ′ = π∗C ′ · e = 0, for any 1-cycle C ′ on X.

2.2.2 Cone of curves and divisors In this subsection, we introduce numerical equivalence,
defined through the intersection number. Additionally, we discuss certain R-vector spaces and cones within
them. These cones serve as fundamental tools for analyzing how divisors and curves influence the geometry of
a variety.

Definition 2.2.7 (Numerical equivalence). Let X be a variety.

1. Two Cartier divisors D and D′ on X are said to be numerically equivalent, written D ≡ D′, if D·C = D′·C
for any 1-cycle C on X. The group of numerical equivalence classes of Cartier divisors is denoted by
N1(X) and called the Néron-Severi group.

2. Two 1-cycles C and C ′ on X are said to be numerically equivalent, written C ≡ C ′, if D ·C = D ·C ′ for
any Cartier divisor D on X. We denote by N1(X) the group of numerical equivalence classes of 1-cycles.

3. We define the F-vectorial spaces N1(X)F := N1(X) ⊗Z F and N1(X)F := N1(X) ⊗Z F, for F = Q or
F = R.

By the Theorem of the base of Néron-Severi, the Néron-Severi group N1(X) is a free abelian group of finite
rank ρ(X), called the Picard number of X. The intersection number of Definition/Proposition 2.2.3(4) induces
a perfect pairing N1(X)R ×N1(X)R ! R making N1(X)R and N1(X)R dual spaces.

Example 2.2.8. Assume S is a smooth surface. On such a surface, linear and numerical equivalences are
the same. This means that if two divisors are linearly equivalent, they are also numerically equivalent, and
vice-versa. Thus Pic(S) ∼= N1(S). Moreover, since subvarieties of S of codimension one are curves, divisors
and 1-cycles coincide. Therefore, we have an identification of N1(S) = N1(S) and so the intersection number
induces a non-degenerate symmetric bilinear form N1(S)R × N1(S)R ! R. This bilinear form satisfies the
following. We refer to [Har77, Chapter V, Theorem 1.9] for a proof.

Theorem 2.2.9 (Hodge index theorem). Let S be a smooth surface. Then the non-degenerate symmetric
bilinear form N1(S)R × N1(S)R ! R has signature (1, ρ(S) − 1), i.e., it can be diagonalized with entries
(1,−1, . . . ,−1).

Now, for a given variety X, we provide the definition of relevant cones in the spaces N1(X) and N1(X).
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Definition 2.2.10 (Nef divisor and nef cone). A Cartier divisor D is called nef if D ·C ≥ 0 for every effective
1-cycle C on X. The nef cone Nef(X) ⊂ N1(X)R is the closed convex cone generated by nef divisors.

Next, we define the Mori cone, which is fundamental to the Minimal Model Program (MMP), as the steps of the
program (extremal contractions and flips) are determined by the extremal rays of the Mori cone (see Section
2.2.3).

Definition 2.2.11 (Mori cone). The cone of curves NE(X) ⊂ N1(X) is the convex cone generated by classes
of effective 1-cycles, i.e.,

NE(X) =
{∑

ni[Ci]|Ci is a curve and ni ≥ 0
}
.

Its closure NE(X) is called the Mori cone.

By definition, the dual cone of the Mori cone NE(X) is the nef cone Nef(X). A subcone N ⊂ NE(X) is called
extremal if for any two elements u, v ∈ NE(X) with u+ v ∈ N , we have that u, v ∈ N . If N is an extremal face
of dimension 1, we say that N is an extremal ray. In general, NE(X) may be round and an extremal ray may
not be generated by a class of a curve.

An extremal ray R ⊂ NE(X) is called KX -negative, KX -positive, or KX -trivial if KX · α < 0, KX · α > 0, or
KX · α = 0, respectively, for all α ∈ R \ {0}. By a slight abuse of notation, we write KX · R < 0 to indicate
that KX · α < 0 for all α ∈ R \ {0}. The same convention applies for KX · α > 0 and KX · α = 0.

Definition 2.2.12 (Relative cones). Let π : X ! Y be a morphism between projective varieties. We denote by
N1(X/Y ) the subspace of N1(X) generated by classes of curves contracted by π. Two Cartier divisors D and D′

on X are numerically equivalent over Y , written D ≡Y D′, if D ·C = D′ ·C for every curve C ∈ N1(X/Y ). The
quotient of N1(X) by this relation is denoted by N1(X/Y ). The relative Picard numberρ(X/Y ) is the rank of the
free abelian group N1(X/Y ). The relative cone of curves NE(X/Y ) is defined as the cone NE(X)∩N1(X/Y )R

in N1(X/Y )R, and so in N1(X)R it is generated by classes of curves contracted by π.

Note that NE(X/Y ) := NE(X) ∩ ker(π∗). For convention we also denote the relative cone of curves by NE(π).

Proposition 2.2.13 ([Deb01, Proposition 1.14]). Let π : X ! Y be a morphism between normal projective
varieties. Then,

1. The class of a curve C lies in NE(π) if and only if C is contracted by π.

2. NE(π) is an extremal subcone of NE(X).

3. If π∗OX = OY (equivalently, π has connected fibers), then π is uniquely determined, up to isomorphism,
by the extremal subcone NE(π).

We name morphisms satisfying the condition (3) of Proposition 2.2.13.

Definition 2.2.14. A contraction π : X ! Y is a surjective morphism with connected fibers between normal
projective varieties. By Proposition 2.2.13, it is uniquely associated with the extremal subcone NE(π). When
NE(π) is an extremal ray, π is called an extremal contraction.
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We remark the following. Since the intersection number depends on the linear equivalence class of a Cartier
divisor, it follows that linear equivalence implies numerical equivalence and so there is a natural surjective map
Pic(X) ! N1(X). Next, we will see that some geometric properties of divisors depend only on their numerical
class.

Definition 2.2.15 (Ample divisor). Let D be a Cartier divisor on X. D is called very ample if there exists
and embedding f : X ↪! PN such that OX(D) = f∗OPN (1), i.e., D is the restriction of a hyperplane of PN to
X, under the embedding f . D is called ample if there exists a positive integer m such that mD is very ample.

Proposition 2.2.16 (Kleiman’s ampleness criterion). A Cartier divisor D on a projective variety X is ample
if and only if D · C > 0 for any C ∈ NE(X) \ {0}.

Definition 2.2.17 (Ample cone). The ample cone Amp(X) of a projective variety X is the convex subcone of
N1(X)R generated by classes of ample divisors.

For a Cartier divisor D, we associate the complete linear system P(H0(X,OX(D))), or equivalently the space
|D| of effective divisors that are linearly equivalent to D. The base locus Bs|D| is the set of points of X where
every section s ∈ H0(X,OX(D)) vanishes. If H0(X,OX(D)) is not trivial, the linear system |D| induces a
rational map

φ|D| : X 99K P = P(H0(X,OX(D))∨),

which is defined in the complement of Bs|D|. The map φ|D| is a morphism exactly when Bs|D| = ∅, in this
case, we say that |D| is base point free.

Definition 2.2.18. Let D be a Cartier divisor on a projective variety X.

1. D is called big if there is a constant A > 0 such that h0(X,OX(mD)) ≥ AmdimX for m ≫ 0.

2. D is called semiample if there exists some multiple mD which is base point free.

We end this subsection by introducing the notion of Q-divisors.

Definition 2.2.19 (Q-divisors). A Q-divisor on a projective variety X is a Q-linear combination of subvarieties
of codimension 1. A Q-divisor D is said to be Q-Cartier if some integer multiple of D is a Cartier divisor. Two
Q-divisors D and D′ are Q-linearly equivalent if there exist a integer m > 0 such that both mD and mD′ are
Cartier divisor which are linearly equivalent. We denote this relation as D ∼Q D′.

Remark 2.2.20. The notions of intersection product, ampleness, nefness, bigness and semiampleness can be
extended naturally to Q-Cartier Q-divisors.

2.2.3 Minimal Model Program In this section, we introduce the Minimal model program,
briefly outline how it works and recall the key definitions and results derived from it that are essential for the
development of this thesis. For further details, we refer to [KMM87], [KM98] and [Mat02].
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The Minimal Model Program (MMP) is a program for the construction of “simplest” representatives of each
birational class of mildly singular projective varieties. The MMP plays a crucial role in the birational classi-
fication of projective varieties, as it reduces the problem to studying only the outputs of the program. In the
one-dimensional case, it is well-known that any complex algebraic curve is birational to a unique smooth pro-
jective curve. Since smooth projective curves correspond to compact Riemann surfaces, they are fully classified
by their genus.

The classical 2-dimensional version of the MMP was provided by the Italian school in their work on the birational
classification of projective surfaces. The procedure is as follows. Given a projective surface S′, it is birationally
equivalent to a smooth projective surface S. Thus, we perform an algorithm from S, whose main ingredient
is Castelnuovo’s contractibility criterion. This criterion states that whenever a smooth projective surface S

contains a (−1)-curve C, i.e., a rational curve C ∼= P1 with C2 = −1, S can be blown down to a smooth surface
with exceptional curve C. This is called contraction of C. Repeating this process a finite number of times, we
end up with a smooth projective surface S̃ without (−1)-curves. Surfaces satisfying this last property are called
minimal surfaces. For instance, the minimal surfaces in the birational class of rational surfaces are P2, P1 × P1

and the Hizerbruch surfaces Fn, n ≥ 2.

It can be verified that any (−1)-curve C on a smooth projective surface S generates a KS-negative extremal ray
R ⊂ NE(S), and the contraction of C corresponds to the contraction of the ray R. Furthermore, if a smooth
surface S satisfies that KS is nef, then S is immediately a minimal surface. This perspective is the foundation
for extending the MMP to higher-dimensional varieties. In dimension three, it was fully established by Mori
[Mor79], and more recently Birkar, Cascini, Hacon, and McKernan [BCHM10] achieved a major breakthrough
in higher dimensions.

Given a smooth projective variety X, the first step in the modern MMP is to ask whether KX is nef. If it is,
X is a minimal model and the program stops. If not, the next task is to find a KX -negative extremal ray R

which can be contracted. However, complications arise. The first issue is that singularities become unavoidable
because the contraction of a KX -negative extremal ray may result in a singular target variety. Consequently, a
whole theory of singularities was developed in the context of the MMP. The minimal requirement for varieties
in this framework is that they have a Q-Cartier canonical divisor, so the question of nefness is well-defined. To
conclude, we now define the smallest class of singularities that appear in the MMP.

Definition 2.2.21 (Terminal/canonical singularities). Let X be a normal Q-factorial variety and f : Y ! X be
a log resolution of X, i.e., Y is a smooth projective variety, f is a birational morphism whose exceptional locus
is Exc(f) =

∑
Ei, with Ei prime divisors on Y , and the divisor Exc(f) has simple normal crossing support.

Write
KY ∼Q f∗KX +

∑
aiEi.

We say that X has terminal singularities if ai > 0 for all i, and canonical singularities if ai ≥ 0.

It turns out that this condition does not depend on the choice of log resolution f : Y ! X. Each discrepancy
ai = a(Ei) is a rational number depending uniquely on the valuation νEi

on C(X) associated to Ei. We refer
to [KM98, Definition 2.25] for the notion of discrepancy. Additionally, we sometimes say that X “is” terminal
(resp. canonical) to indicate that X has terminal singularities (resp. canonical singularities).
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Terminal singularities are sufficient to ensure that the MMP is well-defined; in other words, if we start the
MMP with a terminal variety, the variety remains terminal at each step. Thus, the issue of singularities
is resolved. Each contraction of a KX -negative extremal ray falls into one of three categories: it is either
a contraction to a lower-dimensional variety (Mori fiber space), a contraction whose exceptional locus has
codimension one (Divisorial contraction), or a contraction whose exceptional locus has codimension at least two
(small contraction). We formally define these three cases below.

Definition 2.2.22 (Mori fiber space). A Mori fiber space is a normal Q-factorial and terminal projective variety
X together with a morphism f : X ! B satisfying:

1. f∗OX = OB ,

2. −KX if f -ample,

3. ρ(X/B) = ρ(X)− ρ(B) = 1,

4. dimX > dimB.

Recall that condition (1) is equivalent to requiring that f has connected fibers, as stated in Zariski Main
Theorem (see [Har77, Corollary III.11.4]. Consequently, it is associated with an extremal ray R ⊂ NE(X) such
that KX ·R < 0, by Proposition 2.2.13(3) and conditions (3) and (2). Finally, condition (4) guarantees that it
is indeed an outcome of the MMP. We sometimes denote a Mori fiber space X ! B as X/B.

Example 2.2.23 (Fano variety). Let X be a smooth variety. We say that X is a Fano variety if its anticanonical
divisor −KX is ample. Assume that X has Picard rank ρ(X) = 1. Thus, the morphism X ! Spec(C) endows
X with the structure of a Mori fiber space. In particular, the projective spaces Pn are Mori fiber spaces.

Definition 2.2.24 (Divisorial contraction). A divisorial (extremal) contraction is a birational contraction
f : X ! Z between Q-factorial terminal varieties such that

1. −KX is f -ample,

2. ρ(X/Z) = 1,

3. the exceptional locus Exc(f) is a prime divisor of X

The divisor of X is contracted onto a subvariety of codimension ≥ 2 in Z, which is called the center of the
divisorial contraction.

By definition of contraction (see Definition 2.2.14) and condition (2), f is associated with an extremal ray
R ⊂ NE(X). Condition (1) implies that −KX restricted to the fiber is ample, i.e., for any curve C contained
in R, −KX · C > 0.

Definition 2.2.25 (Small contraction). An extremal contraction f : X ! Z from a Q-factorial terminal variety
X is small if the exceptional locus Exc(f) has codimension at least 2 in X.
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The second new challenge in the higher dimensional MMP arises when the contraction of a KX -negative extremal
ray is a small contraction. More generally, when a small contraction X ! Z contracts curves that intersect
non-trivially with KX , the canonical divisor KZ of Z fails to be Q-Cartier. The concept of a flip, introduced
by Mori, is used to resolve this issue. We provide its definition, along with the definitions of flops and antiflips,
as these notions will appear in Chapter 4. First, we define the following.

Definition 2.2.26 (Pseudo-isomorphism). A birational map f : X 99K X ′ is called a pseudo-isomorphism if it
is an isomorphism in codimension one, i.e., there exist open subsets U ⊂ X and V ⊂ X ′ such that X \ U and
X ′ \ V have codimension > 1 and f |U : U

∼
! V . In this case we use the notation f : X // X ′.

Definition 2.2.27 (Flip, flop, antiflip). Let χ : X // X+ be a pseudo-isomorphism between Q-factorial ter-
minal varieties fitting into a commutative diagram

X
χ //

f ��

X+,

f+}}
Z

where f : X ! Z and f+ : X+ ! Z are small contractions associated to extremal rays R ⊂ NE(X) and
R+ ⊂ NE(X+). We say that

1. χ is a flip if KX ·R < 0 and KX+ ·R+ > 0,

2. χ is an antiflip if KX ·R > 0 and KX+ ·R+ < 0,

3. χ is a flop if KX ·R = 0 = KX+ ·R+.

Remark 2.2.28. More generally, we can define a D-flip or D-antiflip for any Q-Cartier divisor D by requiring
that the extremal ray R ⊂ NE(X) has a negative or positive intersection with D, respectively, and the extremal
ray R+ ⊂ NE(X+) has positive or negative intersection with D+, respectively, where D+ is the strict transform
of D under χ. A D-flop is defined as a diagram as above that is both an ordinary flop and a D-flip, i.e.,
KX ·R = 0 = KX+ ·R+, (KX +D) ·R < 0 and (KX+ +D+) ·R+ > 0.

The third problem concerns the existence of flips. This was proven in dimension 3 in [Mor88], and later for
any dimension in [BCHM10]. The existence of a D-flip is equivalent to the finite generation of the OZ-algebra
A :=

⊕
m≥0 f∗OX(mD) which remains an open question for arbitrary D. However, it has been established for

several significant cases. Given the existence of any D-flip, it is unique up to isomorphism and f+ is precisely
the morphism ProjX(A) ! Z.

Now, we are ready to outline how the modern MMP works. We start with a Q-factorial terminal variety X and
ask whether KX is nef. If KX is nef, the program stops and X is a minimal model. If KX is not nef, we choose
a KX -negative extremal ray R and perform its contraction X ! X ′. If the contraction is a Mori fiber space,
the process terminates. If it is a divisorial contraction, X ′ remains a Q-factorial terminal variety, so we replace
X by X ′ and repeat the process. If the contraction X ! X ′ is small, we perform the flip X // X+. Here,
X+ is again a Q-factorial terminal variety, so we replace X by X+ and continue. To conclude the program, it
must be shown that the process eventually terminates. Each divisorial contraction X ! X ′ reduces the Picard
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number by one, i.e., ρ(X ′) = ρ(X) − 1. Therefore, only a finite number of divisorial contractions can occur.
The situation is different for flips since, for any flip X 99K X+, the Picard number is unchanged ρ(X+) = ρ(X).
Thus, there is the possibility of an infinite sequence of flips. This leads to the fourth major problem in the
MMP, known as termination of flips. Shokurov [Sho86] solved this problem for dimension 3, and Kawamata,
Matsuda and Matsuky [KMM87] in dimension 4, but it remains open in higher dimensions. When the process
ends, it does so under one of two conditions: either we obtain a minimal model or a Mori fiber space. In this
thesis, we focus particularly on the former case.

We conclude this section by introducing the more general version of the MMP: the D-MMP, also known as the
minimal model program for pairs (X,D). This version operates similarly to the standard MMP, with the key
difference being that the role of KX is replaced by KX +D, as we see below.

A pair (X,D) always consists of a normal projective variety X and an effective Q-divisor D =
∑

diDi such
that KX +D is Q-Cartier. Analogous to Definition 2.2.21, we have the notion of singularities for pairs.

Definition 2.2.29. Let (X,D) be a pair and f : Y ! X be a log resolution, i.e., a resolution of X such that
Supp(f−1(D) + Exc(f)) has pure dimension 1 and is simple normal crossing. Denote by Ei the exceptional
divisors of f . Write

KY + f−1
∗ D ∼Q f∗(KX +D) +

∑
aiEi.

We say that the pair (X,D) has

1. terminal singularities if ai > 0 for all i,

2. canonical singularities if ai ≥ 0 for all i,

3. Kawamata log terminal singularities (klt) if ai > −1 for all i, or

4. log canonical singularities (lc) if ai ≥ −1 for all i.

Similarly to Definition 2.2.21, each discrepancy ai = a(Ei, X,D) is a rational number that depends uniquely on
the valuation νEi

of C(X) associated to Ei. Therefore, ai does not depend on the choice of the log resolution
f . For a precise definition of discrepancy, we refer to [KM98, Definition 2.25]. Furthermore, we sometimes say
that the pair (X,D) “is” terminal (resp. canonical, klt, lc) to mean that (X,D) has terminal singularities (resp.
canonical singularities, klt singularities, lc singularities).

Again, terminal singularities are sufficient for the D-MMP to be well-defined. A terminal pair (X,D) is a
KX +D-minimal model if KX +D is nef. If, however, we have a terminal pair (X,D) that is not a KX +D-
minimal model, we can contract a KX+D-negative ray of the Mori cone NE(X). This contraction can take one
of the three forms: a KX +D-Mori fiber space, a KX +D-divisorial contraction or a KX +D-small contraction.
In all the three cases −(KX +D) is relatively ample with respect to the contraction. When the contraction is
a KX +D-small contraction, we perform a KX +D-flip, as described in Remark 2.2.28.

Finally, the following result tells us that an extremal ray, for which the associated contraction results in a flip,
flop, or antiflip, is generated by rational curves. Moreover, in the three-dimensional case, any curve that is
contracted is isomorphic to P1.
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Lemma 2.2.30 ([APZ24, Lemma 3.2]). Let φ : X // X+ be a pseudo-isomorphism as in Definition 2.2.27.

1. There exist divisors ∆ and ∆+ in Pic(X)Q and Pic(X+)Q respectively, such that

(KX +∆) ·R = (KX+ +∆+) ·R+ = 0,

and both (X,∆) and (X+,∆+) are klt.

2. The rays R and R+ are both generated by rational curves.

3. If moreover dim(Z) = dim(Z+) = 3, then every irreducible component of Exc(f) and Exc(f+) is isomor-
phic to P1.
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Chapter 3

K3 surfaces

K3 surfaces occupy a central place in the study of algebraic and complex geometry. The name "K3" was coined
by Andre Weil in 1958, in honor of three eminent mathematicians: Kummer, Kähler, and Kodaira, as well
as the K2 mountain in Karakoram. As smooth projective surfaces with trivial canonical bundle, K3 surfaces
form one of the fundamental classes in Enriques’ classification of complex surfaces. They belong to the class of
surfaces with vanishing irregularity and share many properties with Calabi-Yau varieties, including their role
as a 2-dimensional analog.

The study of K3 surfaces connects diverse areas of mathematics, including Hodge theory, lattice theory, and
moduli spaces. A particularly powerful way to study K3 surfaces is through their lattice structure, specifically
the second cohomology group H2(S,Z). The transcendental lattice of a K3 surface captures much of its complex
structure, and automorphisms of K3 surfaces are closely linked to the symmetries of these lattices. The lattice
structure also provides crucial information about the surface’s Hodge theory, as it encodes the decomposition
of cohomology into Hodge components. This deep connection between K3 surfaces and lattices allows for the
application of tools from lattice theory and helps explain many of the geometric and topological properties of
K3 surfaces.

This chapter explores the mathematical structures of K3 surfaces and their classification, with a particular focus
on their relationship to lattices. For an extensive study of the topic we refer to [BPVdV84] and [Huy16].

3.1 Introduction

Definition 3.1.1. A K3 surface is a smooth surface S with irregularity h1(S,OS) = 0 and trivial canonical
divisor KS ∼ 0.

The triviality of KS is equivalent to the existence of a unique (up-to scalar) nowhere vanishing global rational
2-form ωS , i.e., H0(S,KS) = CωS .

The following are some classical examples of K3 surfaces.
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Example 3.1.2 (Complete intersections). A smooth complete intersection S ⊂ Pn+2 of type (d1, . . . , dn) is a K3
surface if and only if

∑
di = n+3. Indeed, H1(S,OS) = 0 by [Bea96, LemmaVIII.9], and KS ∼ (

∑
di−n−3)H,

by the adjunction formula, where H is an hyperplane of Pn+2. Thus, KS is trivial, and so S is a K3 surface,
if and only if

∑
di = n + 3. Moreover, we can assume that 2 = d1 ≤ d2 ≤ · · · ≤ dn. Indeed, if d1 = 1, S is a

complete intersection of type (d2, . . . , dn) in Pn+1. Thus, 2n ≤ n+ 3 and so n ≤ 3. Therefore, we are left with
the following cases:

1. S ⊂ P3 is a smooth quartic surface, or

2. S ⊂ P4 is a smooth complete intersection of a quadric and a cubic hypersurface, or

3. S ⊂ P5 is a smooth complete intersection of three quadric hypersurfaces.

Example 3.1.3 (Double cover of P2). Let π : S ! P2 be a double cover branched along a smooth sextic curve
C ⊂ P2. Denote by l a line in P2. Thus π∗OS ≃ OP2 ⊕ OP2(−3) and KS ∼ π∗(KP2 + 3l), by the canonical
bundle formula for branched coverings. This implies that h1(S,OS) = 0 and KS ∼ OS and so S is a K3 surface.
Moreover, setting A := π∗l we obtain that A2 = 2.

For a K3 surface S, we have that h0(S,OS) = h2(S,OS) = 1 and h1(S,OS) = 0 by definition and Serre duality.
Thus χ(OS) = 2.

The following proposition presents the well-known Riemann-Roch theorem in the specific context of K3 surfaces,
along with its direct consequence, the arithmetic genus formula, which we state for curves that, in principle,
may be singular, reducible, or non-reduced; in other words, for any effective divisor. Additionally, we include
the renowned Noether’s formula. For the general case, we refer the reader to [Bea96, Theorem I.2, I.4, I.5].
Recall that the arithmetic genus of an effective divisor D on S is defined as pa(D) := 1− χ(D,OD).

Proposition 3.1.4 (Formulas for K3 surfaces). Let S be a K3 surface. Then the following holds.

1 (Riemann-Roch). Let D be a divisor on S, then

χ(S,D) = h0(S,D)− h1(S,D) + h0(S,−D) = 2 +
1

2
D2.

2 (Arithmetic genus). Let D be an effective divisor on S, then

2pa(D)− 2 = D2.

3 (Noether’s formula). The topological Euler-Poincaré characteristic of S and the Euler characteristic of
OS are related by

χtop(S) = 12χ(OX) = 24.

We point out that when D is a curve, i.e., an irreducible and reduced effective divisor, the arithmetic genus is
a non-negative integer: pa(D) ≥ 0. A direct consequence of the Riemann-Roch theorem and the Arithmetic
genus formula is the following result.

Proposition 3.1.5. Let D ≁ 0 be a divisor on a K3 surface S. Then:
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1. If D2 ≥ −2 then either D or −D is linearly equivalent to an effective divisor on S.

2. If D is a curve, then D2 ≥ −2 with equality exactly when D ∼= P1 is a rational curve.

3. If D is effective with h0(S,D) = 1, then D2 ≤ −2 and every irreducible reduced component C ≤ D is a
rational curve, i.e., C ∼= P1 and C2 = −2.

4. If D is nef and D2 > 0, then h0(S,D) = 1
2D

2 + 2.

5. If D = C is a smooth curve on S, then −2 ≤ 2g(C)− 2 = C2 and h0(S,C) = g(C) + 1.

Proof. Let D be a non-trivial equivalent divisor on S. Riemann-Roch theorem asserts that

h0(S,D) + h0(S,−D) ≥ h0(S,D)− h1(S,D) + h0(S,−D) = 2 +
1

2
D2.

Thus, if we assume that D2 ≥ −2, then h0(S,D) ≥ 1 or h0(S,−D) ≥ 1, and only one of them is non-zero.
Otherwise, there would exist effective divisors E ∼ D and F ∼ −D such that D · H = E · H > 0 and
−D · H = F · H > 0, for any ample divisor H on S (such H exists since S is projective). This leads to a
contradiction. Hence, we obtain (1).

Now, assume D is a curve. From the arithmetic genus formula, we have that D2 = 2pa(D)− 2 ≥ −2. Observe
that equality holds when pa(D) = 0. If we consider the normalization η : D̃ ! D of D, if follows that D̃ has
geometric genus zero and the map is an isomorphism. Consequently, D ∼= P1 is smooth. This proves (2).

To prove (3), note first that D is the unique effective divisor in the linear system |D| and h0(S,−D) = 0, since
h0(S,D) = 1. Using Riemann-Roch, we conclude that 1 ≥ h0(S,D)− h1(S,D) = 2 +D2/2, which implies that
D2 ≤ −2. Now, let C ≤ D be a curve in the support of D. By (2), C2 ≥ −2. Assume, for contradiction,
that C2 ≥ 0. Applying Riemann-Roch again, we get that h0(S,C) ≥ 2. Consequently, there exists another
curve C ′ ∼ C. Replacing C with C ′ in D, we obtain an effective divisor D′ ̸= D such that D′ ∼ D, leading a
contradiction.

Now, assume that D is a nef divisor with D2 > 0. By Riemman-Roch and the nefness assumption, h0(S,D) ≥ 1

and h0(S,−D) = 0. Moreover, D is big (see Definition 2.2.18(1)) since h0(S,mD) ≥ 2 + m2D2/2 ≥ m2, for
any integer m > 0. Thus, we apply the Kodaira-Ramanujan theorem (see [Huy16, Chapter 2, Theorem 1.8]) to
obtain (4).

Finally, when C is a smooth curve, the arithmetic and geometric genus coincide, and so −2 ≤ 2g(C)− 2 = C2.
Furthermore, from the fundamental exact sequence associated to C we have the exact sequence

0 ! OS ! OS(C) ! OC(C|C) ! 0.

By the adjunction formula, KC ∼ (KS + C)|C = C|C . Hence, from the long exact sequence in cohomology, we
conclude that h0(S,C) ≤ 1+h0(C,KC) = 1+ g(C). On the other hand, combining the Riemann-Roch theorem
and the artihmetic genus formula, we get h0(S,C) ≥ 1 + g(C). Thus, (5) holds.

Recall that if a divisor D is ample on S is, it satisfies that D ·C > 0 for any curve C ⊂ S. The following result
provides a criterion to determine whether a divisor on a K3 surface is ample. We refer to [Har77, Chapter V,
Theorem 1.10] and [Huy16, Chapter 8, Theorem 1.2 and Corollary 1.6] for a proof of it.
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Proposition 3.1.6 (Nakai–Moishezon–Kleiman criterion). A divisor D on a K3 surface S is ample if and only
if D2 > 0, D ·H > 0 for an ample divisor H, and D · C > 0 for every rational curve C.

Given a nef line bundle H ∈ Pic(S), the next theorem establishes necessary and sufficient conditions for H

to be very ample. This result is a combination of results proven in [SD74], although the specific formulation
presented here is from [Mor84a, Theorem 5].

Proposition 3.1.7. Let D be a nef divisor on a K3 surface S such that D2 ≥ 4. Then D is very ample if and
only if the following three conditions hold:

1. There is no irreducible curve E ⊂ S such that E2 = 0 and D · E ∈ {1, 2}.

2. There is no irreducible curve E ⊂ S such that E2 = 2, and D ∼ 2E.

3. There is no irreducible curve E ⊂ S such that E2 = −2 and E ·D = 0.

We conclude this section by exploring some properties of linear systems on a K3 surface. Let D be a divisor on
S and |D| its complete linear system. Recall that the base locus Bs|D| is the set of points on S for where every
section s ∈ H0(S,D) vanishes. Since S is a surface, Bs|D| contains subvarieties (not necessarily irreducible or
reduced) of dimension zero or one. The fixed part of |D| is defined as the largest effective divisor F such that
F ≤ D′ for every D′ ∈ |D|. Consequently, the linear system |D − F | has no fixed part. Setting M = D − F ,
the mobile part of |D| is defined as the linear system |M |.

We collect the main facts about linear systems in the following proposition, which can be found in [SD74].

Proposition 3.1.8. Let D be an effective divisor on a K3 surface S with D2 ≥ 0. Write |D| = |M |+F , where
|M | and F are the mobile and fixed part, respectively. Then:

1. The mobile part M is nef with M2 ≥ 0, M ·D ≥ 0 and |M | is base point free.

2. The fixed part F is a sum of rational curves
∑

aiCi, with ai ≥ 0. Moreover, for any F ′ ≤ F , it holds
that h0(S, F ′) = 1.

3. If M2 > 0, then D2 ≤ M2 and a general element in |M | is an irreducible curve.

4. If M2 = 0, then M ∼ aE, where E is an irreducible curve with pa(E) = 1 and a ≥ 1. Moreover,
h0(S,M) = 1

2M
2 + 1 + a.

5. If D is nef with D2 > 0, then either F = 0 or D ∼ aE + C, where E is an irreducible curve with
pa(E) = 1, C is a rational curve and a ≥ 2.

Proof. We begin by proving (1). Assume there exists a curve C ⊂ S such that M ·C < 0. Then C is contained
in every element of |M | which implies that |M | has fixed part. Thus, M is nef. Now, suppose M2 ≤ −2. Let
C be an irreducible reduced component of M . By Proposition 3.1.5(3), C is a rational curve and h0(S,C) = 1.
Therefore, any element of |M | contains C, which again contradicts the fact that |M | has no fixed part. Hence,
M2 ≥ 0. Finally, from [SD74, Corollary 3.2], |M | is base point free.
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The fixed part F satisfies that h0(S, F ) = 1, and any component F ′ ≤ F is fixed, so h0(S, F ′) = 1. Thus, (2)
follows from Proposition 3.1.5(3).

To prove the first assertion of (3), note that if M2 > 0, then Proposition 3.1.5(4) implies h0(S,M) = 2+M2/2.
Consequently,

D2

2
+ 2 ≤ h0(S,D) = h0(S,M) =

M2

2
+ 2 =⇒ D2 ≤ M2.

Moreover, the second assertion of (3) and (4) follow by [SD74, Proposition 2.6].

Now we prove (5) following the approach outlined in [Huy16, Chapter 2, Corollary 3.15]. Assume that D is big
and nef, i.e., D is nef and D2 > 0. We separate into the two cases: M2 > 0 ot M2 = 0. Suppose M2 > 0.
Then M is nef and big. Thus, h0(S,D) = h0(S,M) and h1(S,D) = h1(S,M) = 0, so D2 = M2. This implies
D2 = (M+F )2 = M2+2M ·F +F 2, and 0 = 2M ·F +F 2. Since D is nef, 0 < D ·F = M ·F +F 2, which implies
M · F = 0 = F 2. This is a contradiction, as F 2 ≤ −2 by Riemann-Roch and the fact that h0(S, F ) = 1. Thus,
we conclude that F = 0. Suppose now that F ̸= 0, or equivalent, M2 = 0. Then there exists an irreducible
curve E, such that h0(S,E) = 1, and an integer a > 0, such that M ∼ aE. Note that a > 1; otherwise,
h1(S,M) = h1(S,E) = 0 and 2 < h0(S,D) = h0(S,M) = h0(S,E) = 1, which is absurd.

Thus, a > 1. Observe that 0 < D2 = (M + F )2 = 2M · F + F 2. Since F 2 ≤ −2, we deduce that M · F > 0.
Consequently, C · E > 0 for at least one irreducible and reduced component C ∼= P1. In particular, M · C ≥ 2.
Therefore, (M + C)2 = 2M · C − C2 > 0 and (M + C) · C = M · C + C2 ≥ 0. This implies M + C is a big
and nef divisor. Using similar arguments as in the case M2 > 0, for the decomposition D = (M + C) + F ′, we
conclude F ′ = 0 and so F = C.

3.2 Hodge and lattice structures

Let S be a K3 surface. For p, q ∈ {0, 1, 2}, we define the Hodge numbers as hp,q = dimC Hq(S,ΩpS), where ΩpS

is the bundle of regular p-forms on S. Then the complex structure on Hi(S,C), is given by

Hi(S,Z)⊗ C ∼= Hi(S,C) =
⊕
p+q=i

Hp,q(S),

where Hp,q(S) denotes Hq(S,ΩpS). By definition and Serre duality we have that h0,0 = h2,0 = h0,2 = h2,2 = 0.
By the Noether’s formula (see 3.1.4(3)) and the Poincare duality we have that the Euler characteristic of S is
χtop = 12χ(OS) = 24 = 2b0(S) + 2b1(S) + b2(S), where bi(S) = dimR Hi(S,R) = dimC Hi(S,C) are the Betti
numbers. Since h1,0 = 0, we get that b1 = 0, b2 = 22 = h2,0 + h1,1 + h0,2 and so h1,1 = 20. Thus, the Hodge
diamond of S is the following

1

0 0

1 20 1 .

0 0

1

The second cohomology group H2(S,Z) is a free Z-module of rank 22, and endowed with the cup product it is
an even unimodular lattice of signature (3, 19), isometric to ΛK3 (see Example 2.1.7 and [BHPVdV04, Chapter

31



VIII, Proposition 3.3]). The Hodge structure of H2(S,Z),

H2(S,Z)⊗ C ∼= H2(S,C) = H2,0(S)⊕H1,1(S)⊕H0,2(S),

is such that H2,0(S) = H0(S,Ω2
S)

∼= CωS , H0,2(S) = CωS , and H1,1(S) is orthogonal to H2,0(S) ⊕ H0,2(S),
under the extension of the cup product to H2(S,C). The exponential sequence

0 −! Z −! OS −! O∗
S −! 1,

induces a long exact sequence in cohomology

· · · −! H1(S,OS) −! H1(S,O∗
S) −! H2(S,Z) −! H2(S,OS) −! · · · .

From the identification Pic(S) ∼= H1(S,O∗
S) and the fact that H1(S,OS) = 0, we have that Pic(S) is a subgroup

of H2(S,Z) and the intersection number on S coincide with the cup product restricted to Pic(S). Moreover,
we can identify naturally H2(S,Z) as a subspace of H2(S,C). The following proposition asserts that we can
recover Pic(S) from the Hodge structure on H2(S,Z).

By ⟨x, y⟩, we indicate the cup product of x with y for every x, y ∈ H2(S,Z), and by x·y, as usual, the intersection
product of x with y for every x, y ∈ Pic(S).

Proposition 3.2.1 (Lefschetz theorem in (1, 1)-classes, [BHPVdV04, Chapter IV, THeorem 2.13]). For a K3
surface we have

Pic(S) ∼= H2(S,Z) ∩H1,1(S) = {x ∈ H2(S,Z)|⟨x, ωS⟩ = 0}.

Therefore, Pic(S) is an even lattice with Picard number ρ(S) ≤ 20 and signature (1, ρ(S) − 1), by the Hodge
index theorem (see Theorem 2.2.9). We define the lattice T(S) as the orthogonal complement Pic(S)⊥ of
Pic(S) inside H2(S,Z). It has rank 22 − ρ(S) and signature (2, 20 − ρ(S)). The lattices Pic(S) and T(S) are
called the Picard and transcendental lattice respectively, and they are primitive sublattices of H2(S,Z). The
transcendental lattice T(S) has a sub-Hodge structure T(S)C = T2,0(S)⊕T1,1(S)⊕T0,2(S) of H2(S,Z), where
T2,0(S) = CωS by Proposition 3.2.1. Indeed, T(S) is the minimal lattice with sub-Hodge structure of H2(S,Z)
with this property.

3.3 Automorphisms

The study of automorphisms of K3 surfaces reveals a profound interplay between geometry, topology, and arith-
metic. The Global Torelli Theorem provides a foundational result, connecting the geometry of K3 surfaces
to their Hodge structures and lattices, enabling a lattice-theoretic approach to understanding automorphisms.
Automorphisms of K3 surfaces can be classified as symplectic or non-symplectic, depending on whether they
preserve the holomorphic 2-form, and their analysis is closely tied to the lattice structure of the second cohomol-
ogy group. This section is devoted to these topics, exploring the Torelli theorem, symplectic and non-symplectic
automorphisms, and the role of lattice theory in classifying and analyzing the symmetries of K3 surfaces.

Definition 3.3.1. Let φ be an isometry of H2(S,Z).
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1. φ is called a Hodge isometry if its C-linear extension φC to H2(S,C) preserves the Hodge structure, i.e.,
φC(H

2,0(S)) = H2,0(S).

2. φ is called effective if it sends an ample class to an ample class.

We denote by Aut(S) the group of automorphisms of a K3 surface S. Since the tangent bundle TS is isomorphic
to the contangent bundle ΩS , it follows that H0(S, TS) = 0. This implies that Aut(S) is a discrete group. The
first result presented in this section asserts that any automorphism of a K3 surface S naturally induces a Hodge
isometry of H2(S,Z). This is a first indication of the deep connection between the geometry of a K3 surface
and the lattice and Hodge structure of its second cohomology group.

Proposition 3.3.2. Let f ∈ Aut(S) be an automorphism of S, then f∗ is an effective Hodge isometry of
H2(S,Z).

Proof. The pullback f∗ : H2(S,Z) ! H2(S,Z) induced by f is an isometry of lattices. Since f is an isomor-
phism, the pullback of a 2-rational form of S is a 2-rational form. Hence, the extension f∗

C of f∗ to H2(S,C)
preserves H2,0(S). Moreover, f∗

C sends H1,1(S) and H0,2(S) to themselves because f∗
C commutes with the

complex conjugation and preserves the bilinear form. Thus, f∗ is a Hodge isometry.

Furthermore, f∗ is effective, as the pullback f∗H of any given ample class H remains ample. Specifically, let
m be a positive integer such that |mH| determines an embedding φ|mH| : S ↪! PN . Composing this embedding
with f , the map φ|mH| ◦ f is also an embedding of S in PN , given by the linear system |mf∗H|.

We note that both lattices Pic(S) and T(S) are mapped to themselves by the isometry f∗, and more generally,
for any Hodge isometry of H2(S,Z). This follows directly from Proposition 3.2.1. Moreover, the following
theorem establishes that the converse of the preceding proposition is also true.

Theorem 3.3.3 (Global Torelli theorem). Let S be a K3 surface and φ : H2(S,Z) −! H2(S,Z) be a Hodge
isometry sending an ample class to an ample class. Then there exists a unique automorphism f of S such that
f∗ = φ. In other words, we have the following one-to-one correspondence:

Aut(S) ∼= {φ ∈ O(H2(S,Z))|φ is an effective Hodge isometry}.

The Global Torelli theorem allows us to investigate automorphisms of a K3 surface via isometries of its second
cohomology group. By Proposition 2.1.11, the orthogonal group of H2(S,Z) can be characterized from isometries
of Pic(S) and T(S) that glue appropriately.

Remark 3.3.4. For an effective isometry φ ∈ O(H2(S,Z)), the condition that φ preserves an ample class
(or equivalent the ample cone Amp(S) ⊂ Pic(S)R) is determined by its restriction φP = φ|Pic(S) to Pic(S).
Meanwhile, the condition that φ preserves the Hodge structure of H2(S,Z) is determined by its restriction
φT = φ|T(S) to T(S). In fact, the C-linear action on H2,0(S) = T2,0(S) = CωS , induced by φ, takes the form
φCω = φT CωS = λωS , where λ ∈ C∗. This action depends on the Hodge isometry φT of the transcendental
lattice T(S). Thus, we arrive at the following conclusion:

Aut(S) ∼= {(φP , φT ) ∈ O(Pic(S))×O(T(S))|φP preserves Amp(S), φTωS = λωS with λ ∈ C∗, and φP = φT }.
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Definition 3.3.5. Let S be a K3 surface.

1. An automorphism f ∈ Aut(S) is said to be symplectic if f∗ωs = ωS .

2. An automorphism f ∈ Aut(S) is said to be non-symplectic if f∗ωs ̸= ωS .

3. A non-symplectic automorphism f ∈ Aut(S) is said to be anti-symplectic if f∗ωs = −ωS .

Determining whether an automorphism of a K3 surface is symplectic or anti-symplectic can be an easy task, as
it is directly related to whether the action on the transcendental lattice is trivial up to a sign.

Proposition 3.3.6 ([Nik79, Theorem 3.1], [Huy16, Chapter 3, Lemma 3.3]). Let φ be a Hodge isometry of
H2(S,Z). Its action on H2,0(S) is φC(ωS) = ωS (resp. φC(ωS) = −ωS) if and only if its action on T(S) is
φ|T(S) = id (resp. φ|T(S) = − id).

Corollary 3.3.7. Let f ∈ Aut(S) be an automorphism of a K3 surface S. The following are equivalent:

1. f is symplectic (resp. anti-symplectic).

2. f acts on H2,0(S) as id, i.e., f∗ωS = ωS (resp. f acts on H2,0(S) as − id, i.e., f∗ωS = −ωS).

3. f acts on T(S) as id (resp. f acts on T(S) as − id).

Let f be an automorphism of finite order n. The induced map f∗ on H2,0(S) = CωS is a C-linear automorphism
and so, f∗ωS = λωS for some λ ∈ C∗. Since f has finite order n, it follows that ωS = (f∗)nωS = λnωS , and
thus λ is a n-th root of the unity. In particular, if f has order two, f is either symplectic or anti-symplectic.
Automorphisms of finite order have been well understood by several authors from the lattice viewpoint. In
particular, the invariant and co-invariant lattices H2(S,Z)f∗

and H2(S,Z)f∗ of the isometry f∗ induced by an
automorphism f ∈ Aut(S), as defined in Definition 2.1.13, play an important role.

Corollary 3.3.8. For every non-trivial automorphism f of finite order n, the following holds.

1. Both lattices H2(S,Z)f∗
and H2(S,Z)f∗ are non-trivial and primitively embedded in H2(S,Z).

2. f acts trivially on A(H2(S,Z)f∗
) ∼= A(H2(S,Z)f∗).

3. If f has finite prime order p, then both lattices H2(S,Z)f∗
and H2(S,Z)f∗ are p-elementary.

4. If f is symplectic, then T(S) ⊂ H2(S,Z)f∗
and H2(S,Z)f∗ ⊂ Pic(S).

5. If f is non-symplectic, then H2(S,Z)f∗ ⊂ Pic(S) and T(S) ⊂ H2(S,Z)f∗ .

Proof. The fact that H2(S,Z)f∗
and H2(S,Z)f∗ are primitive sublattices of H2(S,Z) follows directly from

Lemma 2.1.14(1), and the fact that f acts trivially on their discriminant groups follows from the definition of
H2(S,Z)f∗

, A(H2(S,Z)f∗
) and Corollary 2.1.10. We prove now that H2(S,Z)f∗

is non-trivial. Indeed, let H be
an ample class of Pic(S). It follows that 0 ̸= H + f∗H + · · ·+(f∗)n−1H is fixed by f∗. Moreover, if H2(S,Z)f∗

is trivial, this implies that f∗ is the trivial isometry of H2(S,Z), by Lemma 2.1.14(3). Therefore, we obtain (1)
and (2). Assertion (3) follows from Lemma 2.1.14(4).

34



Now, assuming that f is symplectic, we get that f∗ acts trivially on the transcendental lattice. Thus,
T(S) ⊂ H2(S,Z)f∗

, and by taking orthogonal complements on both sides, the containment changes, yield-
ing H2(S,Z)f∗ ⊂ Pic(S). This proves (4). Finally, we assume that f is non-symplectic to prove (5). Let
x ∈ H2(S,Z)f∗

. From ⟨x, ωS⟩ = ⟨f∗x, f∗ωS⟩ = λ⟨x, ωS⟩, it follows that (1 − λ)⟨x, ωS⟩ = 0. Since λ ̸= 1, we
deduce that ⟨x, ωS⟩ = 0. Therefore, by Proposition 3.2.1, we conclude that x ∈ Pic(S).

Symplectic automorphisms of K3 surfaces were first introduced by Nikulin [Nik79]. He analyzed the properties
of symplectic automorphisms of finite order through their induced action on the second cohomology group and
proved that this action depends uniquely on the order of the automorphism, as shown in [Nik79, Theorem 4.7].
Additionally, he explored the existence and uniqueness of these actions on cohomology from a lattice-theoretical
perspective, proving that the induced isometry on H2(S,Z) is unique up to isometry. As a consequence of his
work, we have the following result.

Proposition 3.3.9. If a K3 surface S admits a non-trivial symplectic automorphism f ∈ Aut(S) of finite order,
then ρ(S) ≥ 9.

The case of non-symplectic automorphisms has been treated in various works, such as [Nik83, OZ98, MO98,
AS08, OZ11, Tak11, AST11, GS13]. In particular, non-symplectic automorphisms of prime order on K3 surfaces
are classified in [AST11], where the invariant lattice and the topological structure of the fixed locus are described.

We define the subgroup Aut±(S) ⊂ Aut(S) consisting of all symplectic and anti-symplectic automorphisms of S,
i.e., for any f ∈ Aut±(S), either f∗ωS = ωS or f∗ωS = −ωS . The main properties of Aut±(S) are summarized
in the following lemma.

Lemma 3.3.10. Let S be a K3 surface. Then:

1. Aut±(S) is a finite index subgroup of Aut(S).

2. There is a one-to-one correspondence

Aut±(S) ∼= {(φP , ε) ∈ O(Pic(S))× µ2|φP preserves Amp(S) and φP = ε}.

Here µ2 denotes the multiplicative cyclic group of order 2.

Proof. To prove that Aut±(S) is a finite-index subgroup of Aut(S) we refer to [Nik83, Theorem 10.1.2].
Furthermore, by combining Remarks 2.1.12, 3.3.4 and Corollary 3.3.7 we can describe Aut±(S) in terms of
isometries of Pic(S).

3.4 Lattice polarized K3 surfaces

All K3 surfaces are topologically the same. Indeed, as observed in Section 3.2, all topological invariants such
as Betti numbers, the intersection forms, and Hodge numbers are independent of the specific K3 surface.
Moreover, Kodaira proved in [Kod64, Theorem 13] that any two K3 surfaces are deformation equivalent, which,
by Ehresmann’s theorem, implies that all K3 surfaces are diffeomorphic. Thanks to the Weak Torelli theorem
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(Proposition 3.4.4 below), we know that K3 surfaces are distinguished by their Hodge decomposition, which in
turn determines their complex structure.

In this section, we briefly describe the period domain and the moduli space of marked K3 surfaces, as well as
the moduli space of lattice polarized K3 surfaces, which parametrize families of K3 surfaces. For more details,
we refer to [Dol96], [DK07], and [Huy16].

Given a K3 surface S, the isomorphism H2(S,Z) ∼= ΛK3 is neither unique nor canonical. A chosen such
isomorphism is referred to as a marking.

Definition 3.4.1 (Marked K3 surfaces). A marked K3 surface is a pair (S, ϕ) where S is a K3 surface and
ϕ : H2(S,Z) ! ΛK3 an isometry.

Now, consider the one-dimensional space H2,0(S) = CωS , where ωS is the unique (up to scalar multiplication)
nowhere vanishing global rational 2-form. This space is called as the period line of S. It satisfies the following
conditions, known as the Riemann relations of the period:

⟨ωS , ωS⟩ = 0 and ⟨ωS , ωS⟩ > 0. (3.1)

Let (S, ϕ) be a marked K3 surface. The C-linear extension of ϕ to H2(S,C) gives an isomorphism
ϕC : H

2(S,C) ! ΛK3 ⊗ C. As usual, we set ΛC = ΛK3 ⊗ C. Consequently, the image of the period line
CωS corresponds to an element of ΛC which also satisfies (3.1). Two marked surfaces (S, ϕ) and (S′, ϕ′) are said
to be equivalent if there exists an isomorphism f : S ! S′ such that ϕ′ = ϕ ◦ f∗. It is straightforward to verify
that the respective images of the period lines in ΛC coincide.

We now define the period domain. For any element ω ∈ ΛC, we denote by [ω] ∈ P(ΛC) its corresponding point.

Definition 3.4.2 (Period domain). The period domain is the set

D = {[ω] ∈ P(ΛC)|⟨ω, ω⟩ = 0, ⟨ω, ω⟩ > 0} ⊂ P(ΛC) ∼= P21.

The period domain D is an open set (in the usual topology) of the smooth quadric hypersurface Q ⊂ P21 defined
by the equation z20 + z21 + z22 − z33 − · · · − z221 = 0, since ΛK3 has signature (3, 19). Thus, D is a 20-dimensional
complex manifold and can be interpreted as the space of Hodge structures of ΛK3, which corresponds to the
space of Hodge structures of K3 surfaces. Let M be denote the set of marked K3 surfaces. Given marked K3
surface (S, ϕ), the period line CωS corresponds to a point ϕC(CωS) ∈ D. This association defines a natural map
p : M ! D, known as the period map.

Theorem 3.4.3 (Surjectivity of period map). The period map p : M ! D is surjective.

In other words, every point in the period domain D occurs as the period line of a marked K3 surface. Note that
the position of the period line of a K3 surface in the period domain depends on the marking. Indeed, given a
marked K3 surface (S, ϕ), consider any isometry σ ∈ O(ΛK3). Then, σ ◦ ϕ defines a new marking of S, and the
marked K3 surface (S, σ ◦ ϕ) has a period line that corresponds to a different point in D. On the other hand,
we have a weaker version of the Global Torelli Theorem.

36



Proposition 3.4.4 (Weak Torelli Theorem). Let S and S′ be two K3 surfaces and φ : H2(S′,Z) ! H2(S,Z)
be an isometry. Assume that φ is a Hodge isometry, i.e., the period line CωS′ is sent to the period line CωS
under the C-linear extension φC. Then S and S′ are isomorphic.

Hence, the Weak Torelli theorem asserts that two K3 surfaces are isomorphic if and only if there exist markings
for them such that they are equivalent marked surfaces, meaning their corresponding period points coincide.
Combining this with Theorem 3.4.3, we aim to construct a moduli space of K3 surfaces where identified period
points correspond to isomorphic K3 surfaces. The natural approach is to quotient the space of marked K3 sur-
faces, M, by the equivalence relation, and to quotient the period domain, D, by the action of the group O(ΛK3).
In this way, the period map naturally descends to the quotient spaces. However, the quotient D/O(ΛK3) fails
to be Hausdorff because the action of O(ΛK3) on D is not properly discontinuous [Huy16, Chapter 6, 1.3.]. To
address this issue, we will focus on a specific subclass of K3 surfaces with more favorable properties: the lattice
polarized K3 surfaces. This notion was introduced by Dolgachev in [Dol96].

Let L ↪! ΛK3 be a primitive even non-degenerate sublattice of rank ρ and signature (1, ρ− 1). Note that L is
a hyperbolic lattice. Since L has signature (1, ρ− 1), there is a basis of LR where the extension of the bilinear
form is diagonalizable with entries (1,−1, . . . ,−1). Thus, the cone C(L) := {x ∈ LR|x2 > 0} consists of two
disjoint connected components, C+(L) and C−(L), so that C(L) = C+(L) ⊔ C−(L). Two elements x, y ∈ C(L)
belong to the same component if and only if x · y > 0. We define the set of roots ∆(L) := {δ ∈ L|δ2 = −2},
which can also be written as a disjoint union ∆(L) = ∆+(L)⊔∆−(L), where ∆+(L) is the component for which
x · δ ≥ 0 for all x ∈ C+(L) and δ ∈ ∆+(L). We define A(L) := {x ∈ C+(L) ∩ L|x · δ > 0, for all δ ∈ ∆+(L)}.

When L ∼= Pic(S) for a K3 surface S, ∆+(L) corresponds to the set of effective divisors with self-intersection -2.
In particular, it contains all the rational curves on S. Moreover, A(L) corresponds to the ample cone Amp(S),
as stated in Proposition 3.1.6.

Definition 3.4.5 (Lattice polarized K3 surfaces). An L-polarized K3 surface is a pair (S, j) consisting of a
K3 surface S and a primitive embedding j : L ↪! Pic(S) such that j(C+(L)) ∩ Amp(S) ̸= ∅. When j(C+(L)) ∩
Amp(S) ̸= ∅ we say that (S, j) is an ample L-polarized K3 surface.

We say that two M -polarized K3 surfaces (S, j) and (S′, j′) are equivalent if there exists an isomorphism
f : S ! S′ such that j = f∗ ◦ j′. In order to construct the desired moduli space of L-polarized K3 surfaces, we
introduce the following definition.

Definition 3.4.6 (Marked lattice polarized K3 surfaces). A marked L-polarized K3 surface is a marked surface
(S, ϕ) such that ϕ−1(L) ⊂ Pic(S) and (S, jϕ) is a M -polarized K3 surface, where jϕ := ϕ−1|ϕ−1(L) : ϕ

−1(L) ↪!

Pic(S).

We say that two marked L-polarized surfaces (S, ϕ) and ((S′, ϕ′) are equivalent if there exists an isomorphism
f : S ! S′ such that ϕ′ = ϕ ◦ f∗, and so, jϕ = f∗ ◦ jϕ′ .

Now we define the corresponding period domain. Let N = L⊥ be the orthogonal complement of L inside ΛK3.
The period domain for L-polarized K3 surfaces is defined by the set

DL := {[ω] ∈ P(NC)|⟨ω, ω⟩ = 0, ⟨ω, ω⟩ > 0} ⊂ D,
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which is an open subset (in the usual topology) of a smooth quadric hyperplane in P21−ρ. Thus, DL is a complex
maninfold of dimension 20 − ρ. Note that for a marked L-polarized surface (S, ϕ), ϕC(CωS) ∈ DL, since after
identifying L as a primitive sublattice of Pic(S), we have T (S) ⊂ N and H2,0(S) = CωS ⊂ NC.

Let ML ⊂ M be the set of marked L-polarized K3 surfaces. Thus, we have a period map pL : ML ! DL which
is the restriction of the period map p defined above.

Proposition 3.4.7. Every point of DL is realized as the period line of some marked L-polarized K3 surface.

Again, the image of the period line of an L-polarized under the period map depends on the marking ϕ. Indeed,
given an L-polarized K3 surface (S, j) and an isometry σ ∈ O(ΛK3) acting trivially on L, the isometry σ ◦ ϕ

is another marking of (S, j). Let Γ(L) := {σ ∈ O(ΛK3)|σ(l) = l, for all l ∈ L}. The restriction of elements
in Γ(L) to N defines a natural injective homomorphism Γ(L) ! O(N). Let ΓL be the image of this map. By
Proposition 2.1.11, ΓL coincides with the subgroup of isometries of N acting trivially on the discriminant group
A(N) ∼= A(L).

The group ΓL is a discrete group which acts properly discontinuously on DL and so the quotient DL/ΓL is nicely
defined. It is indeed a (20− ρ)-dimensional quasi-projective variety. We consider then the quotient ML/Γ(L),
which corresponds to the set of equivalence classes of L-polarized K3 surfaces. Thus, the period map descends
to a bijection

ML/Γ(L) ∼= DL/ΓL.

Therefore, M(L) := ML/Γ(L) is the coarse moduli space of L-polarized K3 surfaces (we refer to [Dol96, Section
3] for more details on this construction).

By [Nik79, heorem 1.14.4], any even non-degenerate lattice L of rank ρ < 11 and signature (1, ρ−1) in primitively
embedded in ΛK3. Hence, as a consequence of the theory outlined above, we find that for any such lattice there
exists a (20 − ρ)-dimensional family of K3 surfaces in which L is primitively embedded in the Picard lattice.
The following result confirms that L can indeed occur as the Picard lattice of a K3 surface.

Theorem 3.4.8 ([Mor84b, Corollary 2.9]). Let L be an even lattice of signature (1, ρ− 1), with ρ ≤ 10. Then
there exists a K3 surface S and a lattice isometry Pic(S) ∼= L.

Indeed, the generic member S of that (20− ρ)-dimensional family satisfies Pic(S) ∼= L. Now, we introduce the
concept of Aut-general surfaces.

Definition 3.4.9. Let S be a K3 surface, and write H2,0(S) = C · ωS . We say that S is Aut-general if, for
every f ∈ Aut(S), one has f∗ωS = ±ωS .

In other words, a K3 surface S is said to be Aut-general if every automorphism of S is either symplectic or
anti-symplectic, i.e., Aut(S) = Aut±(S). One advantage of considering Aut-general K3 surfaces is that their
automorphism group can be determined from the isometries of the Picard lattice (see Lemma 3.3.10(2)), rather
than from the isometries of the second cohomology group, which is a larger lattice.

Proposition 3.4.10. Every K3 surface S with odd Picard rank is Aut-general.
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Proof. The proof presented here is based on the proof in [Huy16, Chapter 3, Corollary 3.5]. Let S be a K3
surface with odd Picard rank and let f ∈ Aut(S) be a non-trivial automorphism. Assume, by contradiction,
that f∗ωS = λωS , where λ ̸= ±1.

We observe that for any eigenvalue γ of the action of f∗
C on T(S)C, its complex conjugate γ is also an eigenvalue,

since the characteristic polynomial associated with f∗
C has integer coefficients. Consequently, the number of

eigenvalues γ ̸= ±1, counted with multiplicity, must be even. Since T(S) has odd rank, γ = 1 or γ = −1 must
occur as an eigenvalue. Let 0 ̸= x ∈ T(S) be an eigenvector associated with this integer eigenvalue γ. From
⟨x, ωS⟩ = ⟨f∗x, f∗ωS⟩ = ±λ⟨x, ωS⟩, it follows that ⟨x, ωS⟩ = 0. This implies x ∈ Pic(S), which contradicts the
fact that Pic(S) ∩ T(S) = {0}.

The previous result may not hold for K3 surfaces with even Picard rank, as we will see in the following example.

Example 3.4.11. Let ζ ̸= 1 be a primitive 3rd root of unity and consider the hyperbolic lattice L = U(3)⊕A2

of rank 4, where A2 is the lattice with intersection matrix(
−2 1

1 −2

)
.

In [AS08, Theorem 3.3, Proposition 4.9], it is established the existence of a smooth quartic surface S ⊂ P3 with
a non-symplectic automorphism f of order 3, such that f∗ωS = ζωS . This non Aut-general K3 surface is defined
by the equation F4(x0, x1, x2) + F1(x0, x1x2)x

3
3 = 0, where F4 and F1 are general homogeneous polynomials in

C[x0, x1, x2] of degree 4 and 1, respectively. The automorphism f is given by f(x0, x1, x2, x3) = (x0, x1, x2, ζx3).

The condition of a K3 surface S being Aut-general is a very general condition. By very general we mean that
the period line lies outside of a specific enumerable union of hypersurfaces inside the period domain. Therefore,
the existence of an automorphism f ∈ Aut(S) with f∗ωS ̸= ±ωS imposes an algebraic constraint on the position
of the period line in the period domain. Next, we give an idea of this fact.

Fix a hyperbolic lattice L and an L-polarized K3 surface S such that Pic(S) = L. Let f ∈ Aut(S) \ Aut±(S)
be an automorphism of S satisfying f∗ωS = λωS , where λ ̸= ±1. It is known that λn = 1 for some integer
n ≥ 3. Observe that λ is an eigenvalue of the action of f on the complex space T (S)C = NC. In other words,
λ is a root of the characteristic polynomial of f∗

C|NC , which has integer coefficients. Consequently, the complex
conjugate λ is also a root of this polynomial and thus an eigenvalue of f∗

C|NC . This implies that the eigenspace
Vλ, associated to λ, is a proper subspace of T (S)C = NC. Furthermore, since ωS is an eigenvector corresponding
to λ, we have CωS ⊂ Vλ ⊊ NC. As a result, the period line CωS must lie inside a closed subset of DL/ΓL.

3.5 K3 surfaces with Picard rank two

In this section, we focus on K3 surfaces with Picard rank two. We provide a more detailed description of the
automorphisms and the Picard lattice of a K3 surface that admits non-symplectic automorphisms of prime
order. Specifically, we characterize automorphisms of order 2.

We begin by describing the Mori cone NE(S) of a K3 surface S with Picard rank two. This cone is generated
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by two elements.

Proposition 3.5.1 ([Kov94, Theorem 2]). Let S be a K3 surface with ρ(S) = 2. Then the Mori cone NE(S)

is generated by either

1. two classes of rational curves, or

2. a class of a rational curve and a class of an elliptic curve, or

3. two classes of elliptic curves, or

4. two non effective classes in Pic(S)R if S does not contains neither rational nor elliptic curves.

Let S be a K3 surface with Picard rank ρ(S) = 2 and let H be a primitive ample class in Pic(S). Such ample
class exists. Indeed, since S is projective, let H be a very ample class such that φ|H| : S ↪! PN . If H is
not primitive, it is a multiple of a primitive divisor class H ′, which is therefore ample. Hence, without loss
of generality, we assume H to be primitive. By Lemma 2.1.17, the ample class extends to a basis {H,W} of
Pic(S). In this basis, the intersection product is given by

Q =

(
2a b

b 2c

)
, (3.2)

for some integers a, b, c ∈ Z. For convenience, we refer to the opposite of the discriminant of Pic(S) as the
discriminant of S and denote it by r(S) = −disc(Pic(S)). This is a positive integer since Pic(S) has signature
(1, 1).

Proposition 3.5.2. Let S be a K3 surface with ρ(S) = 2. Let D be an effective divisor with D2 ≥ 0 and such
that Pic(S) = ZH ⊕ZD, where H is a very ample divisor with 4 ≤ H2 ≤ 34. Then, either D is nef, |D| is base
point free and a general element of |D| is smooth; or D = H + Γ is not nef, where Γ is a rational curve with
H · Γ = 1, in this case r(S) = 2H2 + 1.

Proof. Write D = M + F , where M and F are the mobile and fixed parts respectively. The mobile part M

is an effective nef divisor such that M2 ≥ 0 by Proposition 3.1.8(1). Assume F ̸= 0. combining Proposition
3.1.8(2) and Proposition 3.5.1 we deduce that F = aΓ1 + bΓ2 is a positive sum of at most two rational curves
since S has ρ(S) = 2. We consider two cases: when M is nef and big (M2 > 0) or M2 = 0.

Assume we are in the latter case. Thus, M = mE, where E is a curve with pa(E) = 1, and m ≥ 1 by 3.1.8(4).
This implies that we are in the case (2) of Proposition 3.5.1, i.e., the Mori cone NE(S) is generated by only one
rational curve, say Γ = Γ1, and E. Thus F = aΓ and Γ · E = 1, by [SD74, (2.7.4)]. Since H ∈ NE(S), we have
H = αE + βΓ with α, β > 0. Notice that β = H · E ≥ 3; otherwise, it contradicts Proposition 3.1.7. Moreover

0 < H · Γ = α− 2β, and so H2 = 2β(α− β) ≥ 4β2 ≥ 36.

This leads to a contradiction. Therefore, M is nef and big, and so D2 ≤ M2 by 3.1.8(3). Now, we consider the
two cases where M is a multiple of H or not.
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If M is not proportional to H, we find that ⟨H,M⟩ is a rank 2 hyperbolic sublattice of Pic(S). Then

k((H ·D)2 −H2D2) = −k disc(H,D)
(∗)
= −disc(H,M) = (H ·M)2 −H2M2 ≤ (H ·D)2 −H2D2,

where the equality (∗) follows from Proposition 2.1.1(3). Hence, the previous inequality can only be satisfied
when k = 1 and H ·D = H ·M , i.e., when D = M has no fixed part. Thus, D is nef, |D| is base point free, by
3.1.8(1). Consequently, a general member is a smooth curve.

If M = λH, Pic(S) = ZH ⊕ ZF . From (λH + F )2 = D2 ≤ M2 = λ2H2, it follows that F 2 ≤ −2λH · F < 0.
Let Γ = Γi be one of the rational curves in the support of F , thus F 2 ≤ Γ2 = −2 and H · Γ ≤ H · F . Thus we
have the following for some positive integer l

l((H · F )2 −H2F 2) = −l disc(H,F ) = −disc(H,Γ) = (H · Γ)2 −H2Γ2 ≤ (H · F )2 −H2F 2.

Then l = 1, H · F = H · Γ and so F = Γ. Therefore, λ = 1 = H · Γ, D = H + Γ, D is not nef, and since Pic(S)

is also generated by H and Γ we get r(S) = disc(H,Γ) = 2H2 + 1.

3.5.1 Automorphisms As mentioned above, for every automorphism f ∈ Aut(S), the isometry
f∗ preserves the Hodge structure of T(S). By [Huy16, Chapter 3, Corollary 3.4, and Chapter 15, Corollary
1.14], the subgroup of O(T(S)) consisting of all Hodge isometries of T(S) is the finite cyclic group µm, where
ϕ(m) divides rank(T(S)). Here, ϕ is the Euler’s totient function. Thus, the Hodge isometry f∗ has finite
order n on T(S), with n dividing m. Let p be a prime factor of m. The possible values for m and p when
rank(T (S)) = 20 are shown in the following table.

m 2 3 4 5 6 8 10 11 12 25 33 44 50 66

ϕ(m) 1 2 2 4 2 4 4 10 4 20 20 20 20 20

p 2 3 2 5 2, 3 2 2, 5 11 2, 3 5 3, 11 2, 11 2, 5 2, 3, 11

In particular, if f is an automorphism of prime order p, we conclude that p ∈ {2, 3, 5, 11}. This is summarized
in the following proposition, where we also describe the respective invariant lattices.

Proposition 3.5.3. Let S be a K3 surface with ρ(S) = 2 and f be an automorphism of finite prime order p.
Then f is non-symplectic, H2(S,Z)f∗ ⊆ Pic(S), and p ∈ {2, 3, 5, 11}. Moreover,

1. If p = 2, then H2(S,Z)f∗
is isometric to ⟨2⟩, U, U(2) or ⟨2⟩ ⊕ ⟨−2⟩.

2. If p = 3, then H2(S,Z)f∗
is isometric to U or U(3).

3. If p = 5, then H2(S,Z)f∗
is isometric to H5.

4. If p = 11, then H2(S,Z)f∗
is isometric to U or U(11).

The invariant lattice H2(S,Z)f∗
= Pic(S) as long as it has rank two, i.e., in all cases above except when

H2(S,Z)f∗
= ⟨2⟩.
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Proof. Let f ∈ Aut(S) be an automorphism of prime order p. By Proposition 3.3.9, it is non-symplectic.
Moreover, from Corollary 3.3.8, the invariant and co-invariant lattices are non-trivial and satisfy

H2(S,Z)f
∗
⊂ Pic(S) and T(S) ⊂ H2(S,Z)f∗ .

The action of f∗ on the transcendental lattice T(S) induces a non-trivial Hodge isometry of order p. We conclude
then that p ∈ {2, 3, 5, 11}. Recall from Corollary 3.3.8(3) that H2(S,Z)f∗

is a hyperbolic p-elementary lattice
of rank one or two. If p = 2, (1) follows from Lemma 2.1. When p ̸= 2, H2(S,Z)f∗

has rank two; otherwise,
H2(S,Z)f∗

= ⟨D⟩, for a divisor class D2 = p, which contradicts the fact that the intersection product of Pic(S)
is even. Finally, assertions (2), (3) and (4) follow from the classification of non-symplectic automorphisms of
order p given by Artebani, Sarti and Taki; see [AS08, Table 2] and [AST11, Tables 2 and 4]

Using the characterization of Aut±(S) in Lemma 3.3.10, along with the classical theory of binary quadratic
forms, Galluzzi, Lombardo and Peters proved that when S is a K3 surface with Picard rank two, the subgroup
Aut±(S) ⊂ Aut(S) has four possible structures.

Proposition 3.5.4 ([GLP10, Corollary 1]). Let S be a K3 surface with ρ(S) = 2. Then,

Aut±(S) ∼=

{
{1} or Z2 if and only if ∃D ∈ Pic(S) with D2 ∈ {0,−2}
Z or Z2 ∗ Z2 if and only if ∄D ∈ Pic(S) with D2 ∈ {0,−2}

Automorphisms of order two belongs to Aut±(S). Involutions on K3 surfaces have been classified by Nikulin
in [Nik79, Nik83] from a lattice theoretical viewpoint. The following result summarizes this classification for
the specific case of Picard rank two. For K3 surfaces with Picard rank two, where the Picard lattice is not
2-elementary, this provides a necessary and sufficient condition for the existence of involutions.

Proposition 3.5.5. Let S be a smooth K3 surface with Picard rank ρ(S) = 2. Then

1. The Picard lattice Pic(S) is isomorphic to U , U(2) or ⟨2⟩ ⊕ ⟨−2⟩ if and only if there exists a non-trivial
involution f ∈ Aut(S) whose invariant lattice H2(S,Z)f∗

is Pic(S). In particular, this is the unique
non-trivial involution of S.

2. Assume that Pic(S) is neither isomorphic to U , U(2) nor ⟨2⟩⊕ ⟨−2⟩, and let f ∈ Aut(S) be a non-trivial
involution. Then, H2(S,Z)f∗

= ⟨A⟩ for some ample divisor A ∈ Pic(S) with A2 = 2. More precisely,
there is a bijection between involutions f of S and ample divisors A with A2 = 2.

Proof. We start by observing that f is a non-symplectic involution with invariant lattice H2(S,Z)f∗ ⊆ Pic(S)

isometric to either ⟨2⟩, U, U(2) or ⟨2⟩ ⊕ ⟨−2⟩, by Proposition 3.5.3(1).

Now we prove (1). First, we note that Pic(S) is a 2-elementary lattice exactly when it is one of the three
possibilities: U , U(2) or ⟨2⟩ ⊕ ⟨−2⟩. This follows from the Nikulin classification of 2-elementary lattices with
signature (1, 1) (see Lemma 2.1). Assume this is the case. So, id and − id are the same as automorphisms of
the discriminant group A(Pic(S)) since it is isomorphic to (Z2)

l. Thus, by Proposition 2.1.11 and Theorem
3.3.3, there exists an automorphism f ∈ Aut(S) whose induced isometry f∗ of H2(S,Z) acts on Pic(S) as id,
and on T(S) as − id. Clearly, f is a non-trivial involution with H2(S,Z)f∗

= Pic(S). The converse follows
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from the fact that the existence of a non-trivial involution f with H2(S,Z)f∗
= Pic(S) implies that Pic(S) is a

2-elementary lattice. Finally, for each of these three lattices, one can find a divisor with self-intersection 0 or
−2. So, Aut±(S) = Z2, which implies the uniqueness of the non-trivial involution above.

Assume the hypothesis in (2) now. Since H2(S,Z)f∗
is a non-trivial primitive sublattice of Pic(S), either it

has rank one or it is Pic(S). It is not the latter, otherwise (1) holds contradicting the hypothesis. Then,
H2(S,Z)f∗

= ⟨2⟩. That is, there exists a divisor class A ∈ Pic(S) with A2 = 2 such that Pic(S) = ⟨A⟩. This
divisor class A is ample since for any ample class D we have that D + f∗D is a multiple of A. This proves
the first assertion of (2) and one direction of the bijection. For the other direction, consider an ample divisor
A ∈ Pic(S) with A2 = 2. Since S is a smooth K3 surface, results of Saint-Donat [SD74, Proposition 2.6,
Theorems 3.1 and 5.1] establish that the rational map corresponding to the complete linear system |A| identifies
S as a double cover of P2 branched along a smooth sextic curve (see Example 3.1.3), and it induces naturally
an involution f . Moreover, it is easy to see that f∗A = A. Finally, to see that this is a 1-1 correspondence, it
is enough to observe that the action of an involution f on Pic(S) is the reflection along the line generated by
its corresponding ample divisor A: E 7−! (A · E)A− E, which uniquely determines f .

Proposition 3.5.4 implies that the finiteness of Aut±(S), and then of Aut(S), is equivalent to the existence of
a divisor class D ∈ Pic(S) with D2 ∈ {0,−2}, putting this together with Proposition 3.5.5 we can determine
completely Aut±(S).

Corollary 3.5.6. Let S be a K3 surface with ρ(S) = 2. Then, if Pic(S) = U,U(2), ⟨2⟩ ⊕ ⟨−2⟩ the subgroup
Aut±(S) ⊂ Aut(S) is isomorphic to Z2, otherwise, Aut±(S) is isomorphic to

{1}
Z2

Z
Z2 ∗ Z2

 if and only if


∃D ∈ Pic(S) with D2 ∈ {−2, 0} and ∄A ∈ Pic(S) ample with A2 = 2,

∃D ∈ Pic(S) with D2 ∈ {−2, 0} and ∃A ∈ Pic(S) ample with A2 = 2,

∄D ∈ Pic(S) with D2 ∈ {−2, 0} and ∄A ∈ Pic(S) ample with A2 = 2,

∄D ∈ Pic(S) with D2 ∈ {−2, 0} and ∃A ∈ Pic(S) ample with A2 = 2.

Let us follow the notation in (3.2). That is, we assume that the Pic(S) = ZH ⊕ ZW , where H is an ample
class, and the intersection matrix in given by the matrix Q in (3.2). Without loss of generality, we assume that
c ̸= 0. In the next proposition, we describe every element in Aut±(S) via its action on Pic(S) in this basis.

Proposition 3.5.7 ([Lee23, Theorem 1.1, Theorem 1.2 and Lemma 2.7]). Let S be a K3 surface with ρ(S) = 2,
Pic(S) ̸= U,U(2), ⟨2⟩ ⊕ ⟨−2⟩. Let H and Q be as above.

An isometry ϕ ∈ O(Pic(S)) is induced by an automorphism f ∈ Aut±(S) if and only if

(ϕ+ id) ∗Q−1 ∈ M2×2(Z) or (ϕ− id) ∗Q−1 ∈ M2×2(Z), and ϕ(H) is ample.

(These are exactly the Gluing and Torelli conditions.)

Furthermore, we have the following characterizations of involutions and automorphisms of infinite order.

1. The automorphism f ∈ Aut±(S) is an involution if and only if the corresponding isometry ϕ = f∗ is of
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the form

ϕ =

(
α β

− b
cα+ a

cβ −α

)
,

where (α, β) is an integer solution of the equation:

α2 − b

c
αβ +

a

c
β2 = 1. (∗)

2. The automorphism f ∈ Aut±(S) has infinite order if and only if the corresponding isometry ϕ = f∗ is of
the form

ϕ =

(
α β

−a
cβ α− b

cβ

)
,

where (α, β) is an integer solution of the equation (∗). In this case, ϕ is a power of

h =

(
α1 β1

−a
cβ1 α1 − b

cβ1

)
,

where (α1, β1) is a minimal positive integer solution of (∗).
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Chapter 4

Sarkisov Program

Recall form Section 2.2.3 that the outcomes of the MMP can be categorized into two types: Minimal models
which consists in varieties X whose canonical class KX is nef and Mori fiber spaces which are the ones with
anticanonical class −KX relatively ample for an appropiate fibration. Mori fiber spaces are the outputs of the
MMP when we start with a uniruled variety. Due to the various choices made when running the MMP, different
outputs can arise starting with the same variety. Thus, it is natural to study the birational maps between
these outputs within the same birational class. The Sarkisov program provides an algorithmic approach to the
factorization of birational maps between Mori fiber spaces in terms of simpler birational maps, called Sarkisov
links. It was established in dimension 3 in [Cor95], and in higher dimensions in [HM13].

4.1 Introduction

We start with the definition of the four types of Sarkisov links between Mori fiber spaces.

Definition 4.1.1 (Sarkisov links). In the following diagrams, X ! B and X ′ ! B′ denote Mori fiber spaces.

(I) A Sarkisov diagram of type (I) is a commutative diagram

Z X ′

X B′,

B

where Z ! X is a divisorial contraction and Z // X ′ is a sequence of flips, flops and antiflips. The map
X 99K X ′ is called a Sarkisov link of type (I).
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(II) A Sarkisov diagram of type (II) is a commutative diagram

Z Z ′

X X ′

B B,

where Z ! X and Z ′ ! X ′ are divisorial contractions and Z // Z ′ is a sequence of flips, flops and
antiflips. In order to avoid trivial diagrams, we also require that the common relative effective cone of Z
and Z ′ over B be generated by the exceptional divisors of Z ! X and Z ′ ! X ′. The map X 99K X ′ is
called a Sarkisov link of type (II).

(III) A Sarkisov link of type (III) is the inverse of a Sarkisov link of type (I).

(IV) A Sarkisov diagram of type (IV) is a commutative diagram

X X ′

B B′,

T

where X // X ′ is a sequence of flips, flops and antiflips, and B ! T and B′ ! T are Mori contractions.
In order to avoid trivial diagrams, we also require that the common relative effective cone of X and X ′

over T be generated by the pullbacks to X and X ′ of ample divisors on B and B′, respectively. The map
X // X ′ is called a Sarkisov link of type (IV).

In the context of a Sarkisov diagram of type (I) or (II) above, we say that the divisorial contraction Z ! X

initiates the Sarkisov link.

Theorem 4.1.2 (The Sarkisov Program - [Cor95], [HM13]). Every birational map φ : X 99K X ′ between Mori
fiber spaces X/B and X ′/B′ can be factorized as a composition of Sarkisov links:

X = Y0 Y1 Y2 · · · Yn−1 Yn = X ′.

B B1 B2 Bn−1 B′

ψ1

φ

ψ2 ψn

Recall that for a variety X, the set of birational maps X 99K X forms a group, which is denoted by Bir(X).
Thus, the Sarkisov program allows us to investigate Bir(X) when X is a Mori fiber space. Specifically, if X is
a Fano variety with Picard rank ρ(X) = 1, the morphism X ! Spec(C) gives X the structure of a Mori fiber
space. In particular, when X = Pn, the Sarkisov program is an excellent tool for studying the Cremona group.
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Definition 4.1.3 (Cremona group). The Cremona group is the group Bir(Pn) of all birational maps Pn 99K Pn.
It is sometimes denoted in the literature by Crn(C). Elements in Bir(Pn) are called Cremona transformations
of Pn.

Some notable subgroups of Bir(X), for a given variety X, are as follows. Let Z ⊂ X be a subvariety of X.
We define the subgroup Bir(X;Z) of Bir(X) as the group of birational maps X that stabilize Z, i.e., those
φ ∈ Bir(X) such that φ(Z) = Z. Similarly, we define Aut(X;Z) ⊂ Bir(X;Z) as the group of elements in
Bir(X;Z) that are regular maps. In the special case X = Pn, the group Bir(Pn;Z) is commonly referred to in
the literature as the Decomposition group of Z, and sometimes denoted by Dec(Z).

Our primary focus is the case where X = P3 (or more generally, X is a Fano threefold with ρ(X) = 1) and S is a
smooth quartic surface (or, more generally, S ∈ |−KX | is a smooth anticanonical surface). This will be further
explored in Chapter 5. In fact, a first result from birational geometry that we will employ is the following
consequence of the Sarkisov program. This result, due to Takahashi [Tak98, Theorem 2.3 and Remark 2.4], is
adapted here in a manner suitable for investigating Gizatullin’s problem and addressing broader contexts.

Proposition 4.1.4. Let Y be a smooth Fano 3-fold with Picard rank ρ(Y ) = 1, Pic(Y ) = ZHY and index s

(i.e., −KY = sHY ), and S ∈ | −KY | be a smooth surface. Assume that any irreducible reduced curve C ⊂ S

with deg(C) := C ·HY < s2H3
Y is a complete intersection, i.e., C = S ∩ T for some hypersurface T ⊂ Y . Then

Bir(Y ;S) = Aut(Y ;S).

Proof. Assume by contradiction there exists φ ∈ Bir(Y )\Aut(Y ) stabilizing S. First, note that the pair (Y, S)
is canonical. Let H′ be a very ample class on Y and H its proper transform under φ. Since φ is nonregular,
(Y, (1 − ε)S + εaH) is not canonical for 0 < ε < 1 and a > 0 such that KY + aH ≡ 0. This follows from the
Noether-Fano inqualities of the Sarkisov program (see [Cor95, Theorem 4.2] and [Tak98, Theorem 1.4]) Let g

be a resolution of indeterminancy of φ:
Z

g

~~

g′

!!
Y

φ // Y .

Let SZ = g−1
∗ S, then g : (Z, (1 − ε)SZ) 99K (Y, (1 − ε)S) and g′ : (Z, (1 − ε)SZ) 99K (Y, (1 − ε)S) satisfy

conditions (∗) of [Tak98, Definition 1.2] for 0 < ε < 1. Since (Y, (1− ε)S + εaH) is not canonical, there exists
an exceptional divisor E of g such that C = g(E) ⊂ S is a curve and the discrepancy of KY +(1− ε)S+ εaH is
negative at E, for 0 < ε ≪ 1. At its generic point, we can view E as the exceptional divisor of the blowing up
π : W ! Y with center C. Let HW the proper transform of H on W . Then HW = π∗H −mE with ma > 1.
Thus,

0 ≤ (HW )2 ·HY = (π∗H−mE)2 ·HY

= π∗H · (π∗H−mE) ·HY −mE · (π∗H−mE) ·HY

= (π∗H)2 ·HY − 2mπ∗H · E ·HY +m2E2 ·HY

= (π∗H)2 ·HY − 2m deg(C)π∗H · e+m2 deg(C)E · e

= (π∗H)2 ·HY −m2 deg(C).
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Therefore,

degC ≤ (π∗H)2 ·HY

m2
=

s2H3
Y

a2m2
< s2H3

Y ,

which implies that C = S ∩ T , with T a surface on Y . Let C0 ⊂ Z be the proper transform of the curve T0 ∩ T

with T0 a general surface on Y . Thus,

0 ≤ HW · C0 = (π∗H−mE) · C0

= H · T0 · T −mT0 · C

=
1

a
S · T0 · T −mT0 · C

=

(
1

a
−m

)
T0 · C

< 0,

where the last inequality follows from am > 1. Contradiction!

We return now to the general theory of the Sarkisov program. Notice that each type of Sarkisov link is recovered
by a commutative diagram

Z
p

||

χ // Z ′

p′

##
X

��

ψ // X ′

��
B

s
((

B′,

s′uu
T

where the possibilities for the maps are:

1. χ is a composition of antiflips/flops/flips or an isomorphism,

2. p and p′ are divisorial contractions or isomorphisms,

3. s and s′ extremal contractions or isomorphisms,

4. ρ(Z/T ) = ρ(Z ′/T ) = 2.

The condition ρ(Z/T ) = 2 implies that either p or s are isomorphism and similarly for ρ(Z ′/T ) = 2. Moreover,
the Sarkisov link it determined by the two extremal rays R1 and R2 that generates NE(Z/T ) ⊂ NE(Z). This
is known as the 2-ray game, and roughly speaking, the idea is as follows. If χ : Z 99K Z ′ is an isomorphism,
the map Z

p
! X ! B ! T is given by the contraction of R1 and the map Z

p′

! X ′ ! B′ ! T is given by
the contraction of R2. If χ is a composition of antiflips/flops/flips, either R1 or R2 gives a small contraction.
Assume the contraction of R2 is small; in this case, we have an antiflip/flop/flip diagram

Z //

contR2   

Z+ ,

cont
R

+
2||

W
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where NE(Z+/T ) is again a 2-dimensional cone generated by extremal rays R+
1 and R+

2 and the contraction
of, say, R+

2 is small. To continue with the “game", we then contract R+
1 . The process repeats until we end up

with a variety Z ′ such that NE(Z ′/T ) is generated by rays R′
1 and R′

2, where one of the two contractions is not
small.

This motivates us to adopt the perspective presented in [BLZ21], where Sarkisov links are associated with rank
2 fibrations. Using this approach, they managed to show, for instance, that the Cremona group Bir(Pn) is not
simple. We refer to [BLZ21, Definition 2.2.] for the definition of relative Mori Dream Space.

Definition 4.1.5 ([BLZ21, Definition 3.1]). Let r be an integer. A morphism η : X ! B is a rank r fibration
if the following conditions hold:

1. X/B is a relative Mori Dream Space.

2. dim(X) > dim(B) and ρ(X/B) = r.

3. X is Q-factorial and terminal, and for any divisor D on X, the output of any D-MMP from X over B

is still Q-factorial and terminal.

4. There exists an effective Q-divisor ∆B on B such that (B,∆B) is klt.

5. −KX is η-big.

The notion of rank r fibrations encompasses the notions of Mori fiber spaces and Sarkisov links. In particular,
a rank 1 fibration is a Mori fiber space, while rank 2 fibrations correspond to Sarkisov links.

Lemma 4.1.6 ([BLZ21, Lemma 3.3]). Let η : X ! B be a surjective morphism between normal varieties. Then
X/B is a rank 1 fibration if and only if X/B is a Mori fiber space.

Lemma 4.1.7 ([BLZ21, Lemma 3.7]). Let Z/T be a rank 2 fibration. Then Z/T factorizes through exactly
two rank 1 fibrations X/B and X ′/B′, fitting into the diagram

p

||

Z
χ′
//χoo

p′

$$
X/B

s
((

X ′/B′,

s′vv
T

where the maps χ and χ′ are sequences of flips, flops or antiflips, and p, p′, s, s′ are morphisms of relative Picard
rank 1 or isomorphisms.

For the purposes of the Sarkisov program, it is important to have a classification of Sarkisov links. In Section
4.3, we focus on the case where the Sarkisov link involves the Mori fiber space Y ! Spec(C), where Y is a
Fano 3-fold with ρ(Y ) = 1 (see Example 2.2.23), particularly when Y = P3. Specially, Y ! Spec(C) appears in
the source of Sarkisov links of type (I) or (II). Consequently, the Sarkisov link necessarily involves a divisorial
contraction p : X ! Y , which can be either a blow-up of a curve or a weighted blow-up of a point (see [Tzi03,
Proposition 1.2] and [Kaw01, Theorem 1.1], respectively).
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Regarding Gizatullin’s problem, we will concentrate on the former case. This choice is motivated by the volume-
preserving version of the Sarkisov program, which imposes restrictions on the birational operations allowed in
volume preserving Sarkisov links. We develop these notions in the next section.

4.2 Calabi-Yau pairs and volume preserving birational

maps

In this section we introduce a special version of the Sarkisov program, which is a generalization of the original
framework for the setting when the varieties and maps have an additional structure: Mori fibered Calabi-Yau
pairs and volume preserving Sarkisov links. It fits perfectly with the study of Gizatullin’s problem since the
pair (P3, S) is a Calabi-Yau pair when S ⊂ P3 is a smooth quartic, and a Cremona transformation φ ∈ Bir(P3)

belongs to Bir(P3;S) if and only if it is volume preserving.

We follow the notions and framework developed in [CK16] and [ACM23].

Definition 4.2.1 (Calabi-Yau pair). A Calabi-Yau pair is a pair (X,D) consisting of a terminal projective
Q-factorial variety X and an effective Weil divisor D on X such that KX +D ∼ 0 and (X,D) has log canonical
singularities. We say that a Calabi-Yau pair (X,D) is canonical if it has canonical singularities.

Remark 4.2.2. The condition that KX + D ∼ 0 implies that there exist a top rational differential form
ωX,D ∈ H0(X,ΩnX), unique up to scalar multiplication, such that D+div(ωX,D) = 0. We call ωX,D the volume
form associated to the Calabi-Yau pair (X,D).

Example 4.2.3. (Weak Fano varieties) Let X be a smooth variety variety. We say that X is weak Fano if the
anticaconical divisor −KX is nef and big. Thus any Fano variety is a weak Fano varieties. A weak Fano variety
X is said to be strictly weak Fano if it is not Fano. Consider a reduced divisor D ∈ | − KX |. Moreover, the
pair (X,D) is a Calabi-Yau pair. In particular, when S ⊂ P3 is a smooth quartic surface, the pair (P3, S) is a
canonical Calabi-Yau pair.

Definition 4.2.4 (Volume preserving maps). Let (X,DX) and (Y,DY ) be Calabi-Yau pairs, and f : X 99K Y

a birational map, inducing an identification of the function fields C(X) ∼=C C(Y ). We say that f is volume
preserving with respect to (X,DX) and (Y,DY ) if, for every divisorial valuation E of C(X) ∼=C C(Y ), the
discrepancies of E with respect to the pairs (X,DX) and (Y,DY ) are equal: a(E,X,DX) = a(E, Y,DY ).

Definition 4.2.5. Let (X,D) be a Calabi-Yau pair. Clearly, a composition of volume preserving birational
self-maps with respect to (X,D) is volume preserving. Thus, we define Birv.p.(X,D) as the group of volume
preserving birational self-maps with respect to (X,D).

We point out that the group Birv.p.(X,D) is a subgroup of the group Bir(X) of birational self-maps of X.

Remark 4.2.6. The volume preserving terminology is explained by the following characterization (see [CK16,
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Remark 1.7]). Given Calabi-Yau pairs (X,DX) and (Y,DY ), consider the unique (up to scaling) associated
volume forms ωX,DX

of (X,DX) and ωY,DY
of (Y,DY ). A birational map f : X 99K Y induces an identification

of the spaces of rational volume forms on X and Y . It is volume preserving with respect to (X,DX) and (Y,DY )

if and only if it identifies the rational volume forms ωX and ωY , up to scaling, i.e., f∗(ωY,DY
) = λωX,DX

for
some λ ∈ C∗.

Proposition 4.2.7 ([ACM23, Proposition 2.6]). Let (X,DX) and (Y,DY ) be canonical Calabi-Yau pairs, and
f : X 99K Y a birational map. Then f : X 99K Y is volume preserving with respect to (X,DX) and (Y,DY ) if
and only if it restricts to a birational map between DX and DY .

Hence, if we consider the volume preserving self-maps of a given canonical Calabi-Yau pair (X,D), the restriction
defines a homomorphism of groups

Ψ: Birv,p(X,D) ! Bir(D).

Remark 4.2.8. In the particular case when S ⊂ P3 is a smooth quartic surface, the pair (P3, S) is canonical and
so the group of Cremona transformations stabilizing S coincides with the group of volume preserving Cremona
transformations with respect to (P3, S):

Bir
(
P3;S

)
= Birv.p.

(
P3, S

)
.

Moreover, since Bir(S) = Aut(S), Problem 1 is equivalent to asking if the restriction homomorphism

Ψ: Bir(P3;S) ! Aut(S)

is surjective. More generally, one may ask for its image. In Section 5.2 we revisit this perspective to investigate
Gizatullin’s problem.

Definition 4.2.9 (Mori fibered Calabi-Yau pair). A Mori fibered Calabi-Yau pair is a Calabi-Yau pair (X,D),
together with a Mori fiber space structure X ! B.

An important tool to study volume preserving birational maps between Calabi-Yau pairs is the volume preserving
variant of the Sarkisov program established in [CK16]. Before we state it, we introduce the volume preserving
version of Sarkisov links.

Definition 4.2.10 ([CK16, Definition 1.12 and Remark 1.13]). A volume preserving Sarkisov link is a Sarkisov
link as in Definition 4.1.1, with the following additional data and property.

• There are effective Weil divisors DX on X, DX′ on X ′, DZ on Z, and DZ′ on Z ′, making the pairs
(X,DX), (X ′, DX′), (Z,DZ) and (Z ′, DZ′) Calabi-Yau pairs.

• All the divisorial contractions, flips, flops and antiflips that constitute the Sarkisov link are volume
preserving for these Calabi-Yau pairs.

Theorem 4.2.11 (Volume preserving Sarkisov Program - [CK16]). Every volume preserving birational map
between Mori fibered Calabi-Yau pairs can be factorized as a composition of volume preserving Sarkisov links.
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The volume preserving condition imposes strong restrictions on the links appearing in a Sarkisov decomposition.
For example, in the context of Gizatullin’s problem, we have the following.

Proposition 4.2.12. Let S ⊂ P3 be a smooth quartic surface, and f : (X,DX) ! (P3, S) a volume preserving
divisorial contraction. Then f : X ! P3 is the blowup of a curve contained in S.

Proof. By [ACM23, Proposition 3.1], the center of the divisorial contraction f : X ! P3 is a curve C ⊂ S. By
[Tzi03, Proposition 1.2], f : X ! P3 is the blowup of P3 along C.

4.3 Classification of Sarkisov links from P3 ! Spec(C)

In this section, we investigate when the blowup of P3 along a curve initiates a Sarkisov link.

Let C ⊂ P3 be a smooth curve and denote by p : X ! P3 the blowup of P3 along C. By Proposition 2.2.6,
N1(X) and N1(X) have rank two. We will denote by H the class of the pullback of a general hyperplane in P3

and by E the excepcional divisor. These two classes generate N1(X). Furthermore, we denote by l the class of
the pullback of a general line in P3 and by e the class of a fiber of E, i.e., a fiber of p over a point on C. These
two classes generate N1(X). Thus, the perfect paring N1(X)R ×N1(X)R ! R is determined by

H · l = 1, H · e = E · l = 0, E · e = −1.

The relative Mori cone NE(X/ Spec(C)) of X ! P3 ! Spec(C) is clearly the whole Mori cone NE(X), which
is two dimensional. One of its generators is e. The anticanonical divisor is −KX = p∗(−KP3) − E = 4H − E.
Since −KX · e = (4H − E) · e = 1 > 0, the extremal ray of NE(X) generated by e is KX -negative and its
contraction gives exactly p : X ! P3.

Assuming that p : X ! P3 initiates a Sarkisov link, it could be of type (I) or (II) and it is determined by the
contraction of the other extremal ray R of NE(X). This contraction could be a Mori fiber space, divisorial or
small. In the latter case, the link would proceed with a flip, flop or antiflip. Thus, we have

• The contraction of R gives a Mori fiber space, a divisorial contraction or a flip ⇔ R is a KX -negative
extremal ray ⇔ X is Fano.

• The contraction gives a flop ⇔ R intersects KX trivially ⇔ X is strictly weak Fano.

• The contraction gives an antiflip ⇔ R is a KX -positive extremal ray ⇔ X is not weak Fano.

Hence, we proceed naturally to analyze when the blowup X of P3 along a curve is weak Fano or not, and
also, assuming one of these two possibilitites, when p : X ! P3 initiates a Sarkisov link. We start with some
constraints on curves C ⊂ P3 whose blowup is weak Fano.

Proposition 4.3.1 ([BL15, Proposition 1.9]). Let C ⊂ P3 be a smooth curve of genus g and degree d. Denote
by X the blow-up of P3 along C and E the exceptional divisor. Then

1. K2
X · E = −KP3 · C = 4d+ 2− 2g,
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2. (−KX)3 = 64− 8d− 2 + 2g,

3. (−KX)3 > 0 if and only if 4d+ 30 ≤ g.

Moreover, if X is weak Fano it holds that

4. dim | −KX | = 1
2 (−KX)3 + 2 ≥ 3,

5. 4d+ 30 ≤ g.

The following criterion to determine whether the blowup of P3 along a curve C initiates a Sarkisov link. This
is a special case of Lemma 4.1.7.

Lemma 4.3.2. Let C ⊂ P3 be a curve, and let X denote the blowup of P3 along C. Then X ! P3 initiates a
Sarkisov link if and only if X ! P3 ! Spec(C) is a rank 2 fibration.

Now, we provide a degree bound:

Lemma 4.3.3. Let C ⊂ P3 be a curve, and X ! P3 the blowup of P3 along C. If X ! Spec(C) is a rank 2

fibration, then deg(C) < 16.

Proof. We denote by E the exceptional divisor of the blowup X ! P3, and by H the pullback of the hyperplane
class of P3. By definition of a rank 2 fibration, −KX = 4H − E is big. We take n sufficiently large so that
|−nKX | has no base components, and −nKX ∼ A+F , with A very ample and F effective. For any T ∈ |−nKX |,
we denote by Ť its pushforward to P3. Note that Ť is a surface of degree 4n containing C with multiplicity at
least n. Let T1, T2 ∈ | − nKX | be general members. We claim that T1 ∩ T2 ̸⊂ E. Indeed, if T1 ∈ | − nKX | and
D ∈ |A| are general members, then E ∩ T1 ∩D consists of finitely many points, and so T1 ∩D ̸⊂ E. If we take
T ′
2 = D + F ∈ | − nKX |, then T1 ∩ T ′

2 ̸⊂ E. This proves the claim. Therefore, as a 1-cycle,

Ť1 · Ť2 = n2C + C ′,

with C ′ a nonzero effective cycle. By Bézout’s Theorem, deg
(
Ť1 · Ť2

)
= 16n2, and thus

16n2 = deg
(
Ť1 · Ť2

)
= deg(C)n2 + deg(C ′) > deg(C)n2.

Hence, deg(C) < 16.

In [BL12, Theorem 1.1], Blanc and Lamy classified smooth curves C ⊂ P3 whose blowups X are weak Fano.
The following observation allows one to check which of these blowups give rank 2 fibrations.

Lemma 4.3.4. Let C ⊂ P3 be a curve, and suppose that the blowup X of P3 along C is terminal and weak
Fano. Then X ! P3 ! Spec(C) is a rank 2 fibration if and only if the morphism to the anti-canonical model
of X is either an isomorphism or a small contraction.

Proof. Since X is weak Fano, it is a Mori Dream Space and −KX is semi-ample. So conditions (1), (2), (4)
and (5) in Definition 4.1.5 are all satisfied. If X is Fano, then any D-MMP is also a (KX)-MMP. Thus, the
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output of any D-MMP is terminal, and so X ! P3 ! Spec(C) is a rank 2 fibration. From now on, suppose
that X is strictly weak Fano. The morphism X ! X̌ to the anti-canonical model of X is either a divisorial
contraction or a small contraction. When X ! X̌ is divisorial, X̌ has worse than terminal singularities, and
therefore X ! P3 ! Spec(C) is not a rank 2 fibration, as it violates condition (3) in Definition 4.1.5. Suppose
that X ! X̌ is a small contraction, and consider its flop

X

  

// X+

||
X̌.

Note that −KX+ is the pullback of −KX̌ , which is ample, and so X+ is again terminal and weak Fano. Write
R+

1 and R+
2 for the two extremal rays of NE(X+), where R+

1 corresponds to X+ ! X̌ and R+
2 is KX+ -negative.

Let D be any divisor on X. Then any D-MMP either ends with P3, or it factors through X+. In the latter
case, any further step is associated to the contraction of R+

2 , and is therefore a (KX+)-MMP too. In any case,
the output of any D-MMP is terminal, and so X ! P3 ! Spec(C) is a rank 2 fibration.

The possibilities for the genus and degree of smooth curves C ⊂ P3 whose blowups X are weak Fano are listed
in [BL12, Table 1], as well as whether or not the morphism X ! X̌ to the anti-canonical model is divisorial for
a general curve in the corresponding Hilbert scheme. So, by putting together [BL12, Theorem 1.1 and Table 1]
and Lemma 4.3.4, we get the following classification.

Theorem 4.3.5. Let C ⊂ P3 be a smooth curve of genus g and degree d, and let X denote the blowup of P3

along C. Suppose that X is weak Fano and X ! P3 ! Spec(C) is a rank 2 fibration. Then

(g, d) ∈


(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),

(2, 5), (2, 6), (2, 7), (2,8), (3,6), (3, 7), (3,8), (4, 6), (4, 7), (4,8), (5, 7), (5,8),

(6, 8), (6,9), (7, 8), (7, 9), (8, 9), (9, 9), (10, 9), (10,10), (11,10), (14,11)

 . (†)

Conversely, suppose that (g, d) ∈ (†) and the smooth curve C satisfies the following conditions, which define an
open subset of the Hilbert scheme Hg,d of curves of arithmetic genus g and degree d:

1. C does not admit 5-secant lines, 9-secant conics, nor 13-secant twisted cubics;

2. there are finitely many irreducible curves in X intersecting −KX trivially.

Then X is weak Fano and X ! Spec(C) is a rank 2 fibration.

The pairs (g,d) in bold are the ones that will be relevant to our approach to Gizatullin’s problem in Section
5.2.

4.3.1 Sarkisov links centered on curves on quartic surfaces In this subsec-
tion, we give some constraints on curves C ⊂ P3 whose blowups initiate Sarkisov links. While these curves are
not completely classified in general, our main result is a classification of curves contained in smooth quartic
surfaces with Picard rank 2 whose blowups initiate Sarkisov links (Proposition 4.3.11). Recall from Lemma 4.3.2
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that the blowup X ! P3 of a curve C ⊂ P3 initiates a Sarkisov link if and only if X ! Spec(C) is a rank 2

fibration.

We first exclude curves that are complete intersections.

Lemma 4.3.6. Let S ⊂ P3 be a quartic surface, C = S∩T the complete intersection of S with another surface
T ⊂ P3, and X ! P3 the blowup of P3 along C. Then X ! Spec(C) is not a rank 2 fibration.

Proof. Let Γ ⊂ T be a general complete intersection curve of T with an hyperplane of P3. Thus, Γ meets C

transversely at S · Γ = 4deg(Γ) distinct points. Denote by Γ̃ ⊂ X its strict transform. Then −KX · Γ̃ = 0. It
follows from [Zik23b, Proposition 3.15] that X ! Spec(C) is not a rank 2 fibration.

When we consider an arbitrary curve C contained in a surface S ⊂ P3, it is useful to be able to replace C with
a better curve C ′ ⊂ S that is linearly equivalent to C in S. For instance, we may want to take C ′ smooth. The
next results allow us to compare the blowup of P3 along C with the blowup of P3 along C ′.

Lemma 4.3.7. Let S be a smooth quartic surface, and C,C ′ ⊂ S curves that are linearly equivalent in S.
Denote by X ! P3 and X ′ ! P3 the blowups of P3 along C and C ′, and by S̃ and S̃′ the strict transforms
of S on X and X ′, respectively. For any curve Γ̌ ⊂ S, denote by Γ and Γ′ its image in S̃ and S̃′ under the
identifications S ∼= S̃ and S ∼= S̃′ respectively. Assume that X and X ′ are Q-Gorenstein. Then the following
hold:

1. (−KX) · Γ = (−KX′) · Γ′.

2. X is weak Fano if and only if so is X ′.

3. Suppose that X is weak Fano and X ! Spec(C) is a rank 2 fibration. If C ′ is general in |C|, then X ′ is
weak Fano and X ′ ! Spec(C) is a rank 2 fibration.

Proof. We denote by E and E′ the exceptional divisors of X ! P3 and X ′ ! P3, respectively. We abuse
notation and use the same symbol H to denote the hyperplane class in P3 and its pullbacks to X and X ′. We
shall see that, for any a, b ∈ Z, (aH − bE) · Γ = (aH − bE′) · Γ′. This yields (1) as a special case.

(aH − bE) · Γ = (aH − bE)|S̃ · Γ = (aH|S − bC) · Γ̌

= (aH|S − bC ′) · Γ̌ = (aH − bE′)|S̃′ · Γ′ = (aH − bE′) · Γ′.

If Γ ⊂ X is any curve with (−KX) · Γ < 0, then Γ ⊂ S̃. By (1) (−KX′) · Γ′ < 0. By the symmetric nature of
the argument, we get that −KX is nef if and only if so is −KX′ . Similarly, for bigness, we have

(−KX)3 = (−KX |S̃)
2 = (4H|S̃ − C)2 = (4H|S̃′ − C ′)2 = (−KX′ |S̃′)

2 = (−KX′)3

In particular (−KX)3 > 0 if and only if (−KX′)3 > 0. This gives (2).

For (3), assume that X is weak Fano and X ! Spec(C) is a rank 2 fibration. Choosing C ′ ∈ |C| smooth
and using (2) and Lemma 4.3.4, it suffices to prove that, for general C ′, the morphism to the anti-canonical
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model of X ′ is small. For that, we perform a blowup in a family over the base |C|: set P := |C| × P3,
Z :=

{
(D, p) ∈ |C| × P3 | p ∈ D

}
, and denote by X the blowup of P along Z. For a general element b ∈ |C|,

the fiber Xb is weak Fano, and so −KXb
is semiample. Therefore, the relative anti-canonical map over |C| is

a morphism on the preimage U of an open subset of |C|. Denote by E the closure of the exceptional locus of
the morphism to the relative anti-canonical model on U . By assumption, the fiber of E over C ∈ |C| is at most
one dimensional. So, by upper-semicontinuity of the dimension of the fiber, the fiber of E over a general point
C ′ ∈ |C| is also at most one dimensional, i.e., the morphism to the anti-canonical model of X ′ is small.

By Theorem 4.3.5, if C ⊂ P3 is a smooth curve satisfying the generality conditions (1) and (2) of Theorem 4.3.5,
its blowup is weak Fano and initiates a Sarkisov link. Condition (1) ensures that the blow-up is weak Fano,
while Condition (2) ensures that it initiates a Sarkisov link. The next two propositions establish criteria to
verify these conditions when the curve C lies on a smooth quartic surface S ⊂ P3. In what follows, we slightly
abuse notation by using the same symbol H to denote the hyperplane class in P3, the class of its pullback on
X, and its restriction class to S.

Proposition 4.3.8. Let S ⊂ P3 be a smooth quartic surface and C ⊂ S be a smooth curve of genus g and
degree d. Denote by X the blow-up of P3 along C. Then the following holds:

1. −KX is nef if and only if 4H − C is nef on S.

2. X is weak Fano if and only if 4H − C is nef and big on S.

3. If X is weak Fano, then the linear system | −KX | is base point free on X if and only if the linear system
|4H − C| is base point free on S.

Proof. Let S̃ be the strict transform of S under the blowup p : X −! P3. Denote by E the exceptional divisor
of p. Thus −KX = 4H − E, S ∼= S̃,

(−KX)|S̃ = (4H − E)|S̃ = 4H − C and (−KX)3 = (−KX |S̃)
2 = (4H − C)2. (4.1)

Since S̃ ∼= S, one has a one-to-one correspondence between curves on S̃ and curves on S given by taking the
image (in one direction) and the strict transform (in the other direction) under p. Moreover, let Γ ⊂ S̃ ⊂ X be
a curve and denote by Γ̌ ⊂ S its image. Thus, it follows from (4.1) that

−KX · Γ = (−KX)|S̃ · Γ = (4H − C) · Γ̌.

Since any curve on X intersecting −KX negatively is contained in S̃, statement (1) holds. Assertion (2) follows
from (1) and (4.1).

To prove (3), we observe that from the fundamental exact sequence associated to S̃ and the identification of
S̃ ∼= S we have the following sequence in cohomology

0 −! H0(X,OX(−KX − S)) −! H0(X,OX(−KX)) −! H0(S,OS(4H − C)) −! H1(X,OX(−KX − S)) · · · .

Since OX(−KX − S) ∼= OX , we get that H1(X,OX(−KX − S)) = 0 and so the map H0(X,OX(−KX)) −!

H0(S,OS(sHS − C)) is surjective. Therefore, the linear system | − KX | has base points on X if and only if
|4H − C| has base points on S.
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Proposition 4.3.9. Let S,C and X be as in Proposition 4.3.8. Assume that C is not a complete intersection of
S with another hypersurface of P3, 4H−C is ample and its linear system is base point free on S. Then X is weak
Fano and there exists finitely many curves intersecting KX trivially (i.e., the morphism to the anticanonical
model is small).

Proof. By assumptions and Proposition 4.3.8(2) and (3), the blowup X is weak Fano and |−KX | is base point
free. Now, assume that the morphism X ! Z to the anticanonical model is not small, then it is divisorial.
Denote by D ∈ Pic(X) the divisor contracted by it. Then D = aH − bE and

0 = (−KX)2 ·D = (−KX ·D)|S̃ = Ď|S · (4H − C) = (aH − bC) · (4H − C),

where Ď is the pushforward of D under the blowup p : X ! P3. We get that aH − bC = 0 by the ampleness of
4H − C. This implies that C is a complete intersection of S with another hypersurface of P3 and contradicts
the hypothesis. Thus, a = 0 = b and so D = 0, a contradiction! Therefore we get the assertion.

In particular, under the assumptions of Proposition 4.3.9, Lemma 4.3.4 guarantees that the blow-up p : X ! P3

initiates a Sarkisov link. For the specific case of smooth quartic surfaces with Picard rank 2, the preceding
propositions yield the following corollary, which establishes a necessary condition for the blow-up of a curve
C ⊂ S to initiate a Sarkisov link.

Corollary 4.3.10. Let S ⊂ P3 be a smooth quartic surface with ρ(S) = 2 and C ⊂ P3. Denote by X the
blowup of P3 along C. Assume that Pic(S) = ZH ⊕ZC, r(S) ̸= 9 and 4H −C is ample on S. Then X is weak
Fano and yields a Sarkisov link.

Proof. By ampleness of 4H − C and Proposition 4.3.8(2), X is weak Fano. Moreover, |4H − C| is base point
free since 4H − C generates Pic(S) and by Proposition 3.5.2. Furthermore, the blowup p : X ! P3 along C

initiates a Sarkisov link φC by Proposition 4.3.8(3) and Proposition 4.3.9.

We end this section with a classification of curves contained in smooth quartic surfaces with Picard rank 2

whose blowups initiate Sarkisov links.

Proposition 4.3.11. Let C ⊂ P3 be a (possibly singular) curve of arithmetic genus pa and degree d lying
on a smooth quartic surface S with Picard rank 2. Let X be the blowup of P3 along C, and suppose that
X ! Spec(C) is a rank 2 fibration. Then X is weak Fano and (pa, d) is one of the pairs in the list (†) of
Theorem 4.3.5.

Proof. We denote by S a smooth quartic surface with Picard rank 2 containing C, and by S̃ its strict transform
on X. Suppose that X ! Spec(C) is a rank 2 fibration. We will show that X is weak Fano. Suppose that X is
not weak Fano. Then the Sarkisov link initiated by X ! P3 proceeds with an anti-flip. By Lemma 2.2.30(3),
the extremal ray corresponding to the associated small contraction of X is generated by a smooth rational
curve Γ ⊂ X such that S̃ · Γ = −KX · Γ < 0. In particular, Γ ⊂ S̃. By [ACM23, Lemma 4.4], we must have
−KX ·Γ = −1. Denote by Γ̌ the image of Γ in P3. Since X ! Spec(C) is a rank 2 fibration, Lemma 4.3.6 implies
that C is not a complete intersection. As in (3.2), we assume that Pic(S) = ZH⊕ZW , where H is a hyperplane
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section of S, the intersection product is given by the matrix (3.2) and S has discriminant r(S) = b2 − 8c > 0.
By changing W if necessary, we may assume that 0 < b < 16. Write Γ̌ = αH+βW and C = δH+γW in Pic(S)

with α, β, δ, γ ∈ Z. The conditions that Γ̌ is a rational curve and −KX · Γ = −1 give the following system:
0 < H · Γ̌ = 4α+ bβ

−2 = Γ̌2 = 4α2 + 2bαβ + 2cβ2

−1 = (4H − C) · Γ̌ = (16− d)α+
(
4b− δb+ d2−8(pa−1)−γ2b2

4γ

)
β.

(4.2)

Note that since C is not a complete intersection, the sublattice ⟨H,C⟩ of Pic(S) has rank two and signature
(1, 1). Thus, d2 − 8(pa − 1) = −disc(H,C) > 0. It follows that pa ≤ d2/8, and d < 16, by Lemma 4.3.3
Moreover, from d2 − 8(pa − 1) = r(S)γ2 and the fact that d < 16 and pa ≥ 0, it follows that r(S), γ2 ≤ 233.
Therefore, there are finitely many possibilities for the pair (pa, d), and hence for the integers b, c, δ and γ. Using
the Matlab code below, one may verify that subject to these conditions, the system (4.2) admits an integer
solution (α, β) if and only if (pa, d) = (15, 11). In this case, the discriminant of S is r(S) = 9 and γ = ±1. So
Pic(S) = ZH ⊕ ZC, and the integer solution of the system (4.2) gives a line ℓ = Γ̌ ∼ 3H − C contained in S.
We will show that the rational contraction X 99K Y to the anti-canonical model of X is divisorial, and thus
Y has worse than terminal singularities. This will contradict the assumption that X ! Spec(C) is a rank 2

fibration, as it violates condition (3) in Definition 4.1.5.

First note that the structure sequence of C ⊂ P3 induces the following inequality:

h0(P3, IC(3)) ≥ h0(P3,OP3(3))− h0(C,OC(3H)) ≥ 10− h0(Ĉ,OĈ(3H)), (4.3)

where ν : Ĉ ! C is the normalization of C and the second inequality stems from the injectivity of ν∗ on global
sections. Using the Riemann-Roch theorem on Ĉ, we conclude that h0(P3, IC(3)) ≥ 1, i.e., C is contained in a
cubic surface T . Moreover, S ∩ T = C ∪ ℓ and this cubic surface is unique for degree reasons. By analyzing the
divisor 5H −C = 2H + ℓ on S, we see that there is a quintic surface containing C whose strict transform on X

does not meet Γ ⊂ X. Hence, the ideal of C in P3 is IC = (f3, f4, f5), where fi are homogeneous polynomials
of degree i, with f3 and f4 cutting out T and S, respectively. The anti-canonical rational contraction of X

factors through the rational map of P3 given by the global sections of IC(4). We may choose coordinates and
a basis of H0(P3, IC(4)) so that this map P3 99K P4 is given by (x0f3 : x1f3 : x2f3 : x3f3 : f4), and its image is
the singular hypersurface Y ⊂ P4 cut out by the equation

f4(y0, y1, y2, y3)− y4f3(y0, y1, y2, y3) = 0.

This map is divisorial, contracting the strict transform of T in X to the singular point (0 : 0 : 0 : 0 : 1) ∈ Y .
Furthermore, since the map is anti-canonical, Y has strictly canonical singularities, contradicting the assumption
that X ! Spec(C) is a rank 2 fibration. From this contradiction we conclude that X is weak Fano.

Finally, by Lemma 4.3.7, for a general C ′ ∈ |C| the blowup X ′ ! P3 of P3 along C ′ is weak Fano and
X ′ ! Spec(C) is a rank 2 fibration. Furthermore, by Proposition 3.5.2, we may choose C ′ to be smooth.
Theorem 4.3.5 then implies that (g(C ′),deg(C ′)) = (pa, d) appears in (†).
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syms x y

% Preallocate memory for GD1 and GD2

GD = [];

GD1 = [];

GD2 = [];

for d = 1:15

g_max = floor(d^2 / 8);

for g = 0:g_max

GD = [GD; g, d, d^2 - 8*(g-1)];

end

end

t = size(GD, 1);

for i = 1:t

g = GD(i, 1);

d = GD(i, 2);

discHC = GD(i, 3);

Div = divisors(discHC);

R = []; %%% possible R=[r b c m n]

for j = 1:length(Div)

divHC = sqrt(discHC / Div(j));

if mod(divHC, 1) == 0

b = 4 - sqrt(mod(Div(j), 8));

c = (b^2 - Div(j)) / 4;

m1 = (d - b*divHC) / 4;

m2 = (d + b*divHC) / 4;

R = [R; Div(j), b, c, m1, divHC; Div(j), b, c, m2, -divHC];

end

end

% Filter results where m is an integer

R1 = R(mod(R(:, 4), 1) == 0, :);

R2 = [];

for l = 1:size(R1, 1)

b = R1(l, 2);

c = R1(l, 3);

m = R1(l, 4);

n = R1(l, 5);
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% Solve system of equations

z = solve(4*x^2 + 2*b*x*y + c*y^2 + 2,

(16-d)*x + (4*b - b*m - c*n)*y + 1, 'Real', true);

XY = [double(z.x), double(z.y)];

% Filter integer and real solutions

for u = 1:size(XY, 1)

if all(mod(XY(u, :), 1) ==0) && 4*XY(u, 1) + b*XY(u, 2) >0

R2 = [R2; g, d, R1(l, :), XY(u, 1), XY(u, 2)];

end

end

end

GD1 = [GD1; R2];

end

% Filter final values

mod8 = mod(GD1(:, 3), 8);

valid_rows = GD1(:, 3) > 8 & (mod8 == 0 | mod8 == 1 | mod8 == 4);

GD2 = GD1(valid_rows, :);
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Chapter 5

On Gizatullin’s problem for low Picard

rank

The goal of this chapter is to provide a complete solution to Gizatullin’s problem (Problem 1) in

the case of quartic surfaces S ⊂ P3 with Picard rank two. We divide the analysis into two cases:

when the quartic surface S has a discriminant greater than 233, and when it has a discriminant less

than or equal to 233. We prove Theorem A and Theorem B, which correspond precisely to these two

cases, respectively. As a consequence of Theorem A, we obtain a negative answer to Oguiso’s question

(Problem 2). Throughout this chapter, we will adopt the following formulation of Gizatullin’s problem.

Given a smooth quartic surface S ⊂ P3, consider the subgroup Bir(P3;S) ⊂ Bir(P3) consisting of

Cremona transformations that stabilize S, meaning that φ ∈ Bir(P3) and φ∗(S) = S. The restriction

of an element φ ∈ Bir(P3;S) to S induces a birational self-map of S, which is an automorphism since

S is a K3 surface. Therefore, we have a homomorphism of groups

Ψ: Bir(P3;S) ! Aut(S). (5.1)

Hence, Problem 1 is equivalent to investigating the image of this map Ψ. More specifically, we aim to

find conditions on S that determine whether this map is surjective or not.

An easy case to begin with is when the smooth quartic S ⊂ P3 has Picard rank ρ(S) = 1. First, we

recall the following. Let H be a hyperplane section of a smooth quartic S ⊂ P3 (of any Picard rank).

Since H is the intersection of S with an hyperplane HP3 of P3, it is a very ample divisor on S with

self-intersection H2 = (HP3)|S · (HP3)|S = H2
P3 · S = 4.

Proposition 5.0.1. Any smooth quartic S ⊂ P3 with Picard rank ρ(S) = 1 has trivial automorphism

group Aut(S). Therefore, the map Ψ: Bir(P3;S) ! Aut(S) = {1} is surjective.
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Proof. Let H be a hyperplane section on S. Since H2 = 4, H is a primitive element of Pic(S) and

therefore generates the lattice. In fact, if Pic(S) = ZW and H = kW is a multiple of the generator

with k ̸= ±1, we have 4 = H4 = k2W 2. Since W 2 is an even number, it follows that k2 must divide 2,

which is a contradiction.

Therefore, we can write the Picard lattice as Pic(S) = ZH = ⟨4⟩. Let f ∈ Aut(S) be an automorphism

of S. Note that the only classes on Pic(S) with self-intersection 4 are H and −H. Thus, f∗H = H

since the induced isometry f∗ in Pic(S) preserves the ample cone, and therefore f acts trivially on

Pic(S) and the discriminant group A(Pic(S)).

Now, we observe that f∗ = ± id on the transcendental lattice T(S), by Proposition 3.4.10. In fact,

f∗ = id, because otherwise the induced action on the discriminant group A(T(S)) is − id. This is not

possible since A(T(S)) ∼= A(Pic(S)) ∼= Z4. Therefore, f∗ = id on H2(S,Z) and hence f itself is trivial

by Proposition 2.1.11 and Theorem 3.3.3.

In higher Picard rank, the situation becomes more intriguing, as the automorphism group of smooth

quartic surfaces (and K3 surfaces in general) is often infinite. In [Ogu12] and [Ogu13], Oguiso was

the first to address Gizatullin’s problem for higher Picard rank, constructing two examples of quartic

surfaces that exhibit distinct behaviors. We present these examples below.

Example 5.0.2 ([Ogu12, Theorem 1.8] and [Ogu13, Theorem 1.2]). Let b ≥ 4 and Sb ⊂ P3 be an

Aut-general smooth quartic surface with ρ(Sb) = 2 and intersection matrix(
4 4b

4b 4

)
.

Such quartics Sb exist and Oguiso showed that Aut(Sb) = Z and Bir(P3;Sb) = {1}. Thus, the

image of the restriction map Ψ in (5.1) is trivial, which is equivalent to conclude that no non-trivial

automorphism of Sb is induced by a Cremona transformation of P3.

The main argument used by Oguiso in this example is based on Takahashi’s result (Proposition 4.1.4).

For the case of Y = P3, Pic(P3) has rank one and it is generated by the class of hyperplanes, and the

index is s = 4. Thus, Proposition 4.1.4 asserts that if there exists a non-regular Cremona transfor-

mation that preserves a quartic surface S ⊂ P3, it must lead to the existence of a curve C ⊂ S with

degree d < 16, which is not a complete intersection of S with another surface in P3. The surfaces Sb

considered here do not satisfy this condition. In the next section, we build on this approach to explore

Gizatullin’s Problem for more general smooth quartic surfaces S ⊂ P3 with ρ(S) = 2.

The following is the other example constructed by Oguiso.

Example 5.0.3 ([Ogu12, Theorem 1.7]). Consider a smooth quartic surface S ⊂ P3 with ρ(S) = 3
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and intersection matrix 
4 1 1

1 −2 0

1 0 −2

 .

Oguiso showed that Aut(S) = Z2∗Z2∗Z2 and the restriction map Ψ: Bir(P3;S) ! Aut(S) is surjective.

Therefore, every automorphism of S is induced by a Cremona transformation of P3.

5.1 The high discriminant case

In this subsection we provide the first steps towards a complete answer to Gizatullin’s problem when

ρ(S) = 2. This is the subject of Theorem A, which recovers Oguiso’s example 5.0.2. We start by

applying results in Sections 2.1.1 and 3.5 to the specific case of smooth quartic surfaces with Picard

rank ρ(S) = 2.

Let S ⊂ P3 be a smooth quartic surface with Picard rank ρ(S) = 2 and H be a hyperplane section.

Recall that H is a very ample divisor on S with H2 = 4. As a consequence of Lemma 2.1.17, the

Picard lattice can be always expressed as Pic(S) = ZH ⊕ ZW for some divisor class W . Thus, with

respect to this basis, the intersection product is given by the following matrix

Q =

(
4 b

b 2c

)
, (5.2)

for some b, c ∈ Z. The discriminant of S, r(S) = −disc(Pic(S)) = b2 − 8c, is a positive integer

congruent to 0, 1, 4 module 8. This follows because any square number is congruent to 0, 1, 4 module

8.

Lemma 5.1.1. Let S ⊂ P3 be a smooth quartic surface with ρ(S) = 2 and H a hyperplane section.

Then, r(S) > 8 and the Picard lattice of S is determined by the discriminant r(S), in the sense of

Proposition 2.1.18. In particular, if b′, c′ are integers such that (b′)2 − 8c′ = r(S), then there exists a

divisor D ∈ Pic(S) such that D ·H = b′, D2 = 2c′ and Pic(S) = ZH ⊕ ZD.

Proof. Write Pic(S) = ZH⊕ZW such that the intersection product is given by the matrix Q in (5.2).

To prove that Pic(S) is determined by r(S) we see that 4 satisfies the condition (2.5) of Proposition

2.1.18. Indeed, for any integer n, its squared n2 ≡ 0, 1, 4 mod 8. The three cases are the following.

(i) n2 ≡ 0 mod 8 if and only if n ≡ 0 mod 4, (ii) n2 ≡ 1 mod 8 if and only if n ≡ 1, 3 mod 4, and

(iii) n2 ≡ 4 mod 8 if and only if n ≡ 2 mod 4; which clearly implies that the condition follows.

Now, let b′, c′ ∈ Z such that (b′)2 − 8c′ = r(S). By condition (2.5) of Proposition 2.1.18 we have that
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b− b′ ≡ 0 mod 4 or b+ b′ ≡ 0 mod 4. Thus,

D =
b′ − b

4
H +W or D =

b′ + b

4
H −W

is an element of Pic(S) satisfying that D ·H = b′, D2 = 2c′. Moreover, since D is not a multiple of H,

the sublattice ⟨H,D⟩ of Pic(S) has rank two and same discriminant. Thus, Pic(S) is generated by H

and D, by Proposition 2.1.1(3).

Finally, we exclude the cases when r(S) = 1, 4 ou 8. By the reasoning above, for r(S) = 1, 4, 8, there

exists a divisor D such that Picard lattice Pic(S) = ZH⊕ZD and the intersection matrix, with respect

to this basis, is (
4 1

1 0

)
,

(
4 2

2 0

)
, or

(
4 0

0 −2

)
.

When r(S) = 1, D is a divisor with D ·H = 1 and D2 = 0. Write D = M + F , where F is the fixed

part of the linear system |D|. Since M ̸= 0 and M · H ≥ 1, from 1 = D · H = M · H + F · H we

obtain that H · M = 1 and D = M . Thus, D is an irreducible curve, by Proposition 3.1.8(4). This

contradicts that H is very ample.

When r(S) = 4, D is a divisor with D ·H = 2 and D2 = 0. Write D = M+F , where F is the fixed part

of the linear system |D|. Note that M ·H ≥ 1, and F ·H ≥ 0 with equality if and only if F = 0. Assume

F ̸= 0. Then F ·H = 1 and M ·H = 1. In this case, F is a rational curve by Proposition 3.1.8(2).

Representing F = nH +mD and looking for integer solutions of the equation −2 = F 2 = 4n2 + 2nm,

we get that F = H − 3D. Thus, from 1 = F ·D and 0 = D2 = D · (M + F ) = D ·M + 1 we get that

D ·M = −1, which contradicts Proposition 3.1.8(1). So, F = 0, D = M and D = aE, where E is an

irreducible curve and a ∈ {1, 2}, by Proposition 3.1.8(4). Thus, E ·H ∈ {1, 2} and again contradicts

that H is very ample, by Proposition 3.1.7.

When r(S) = 8, D is a divisor with D · H = 0 and D2 = −2. Proposition 3.1.5(1) implies that D

or −D is linearly equivalent to a effective divisor. Thus, we get that D · H > 0 or −D · H > 0: a

contradiction.

By Theorem 3.4.8, given an even lattice of signature (1, 1), it occurs as the Picard Lattice of some K3

surface. In the following result, we add conditions on the Picard lattice so that this K3 surface is in

fact a smooth quartic in P3. We say that a lattice L represents an even integer 2k if there is an element

x ∈ L with x2 = 2k.

Proposition 5.1.2. Let S be a K3 surface with ρ(S) = 2. Assume that the Picard lattice Pic(S)

represents 4 and the discriminant r(S) > 8. Then, there is a very ample divisor H ∈ Pic(S), such that

H2 = 4 and the induced embedding ι|H| : S ↪! P3 is an isomorphism onto a smooth quartic surface.
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Proof. Let S be as the hypothesis and H ∈ Pic(S) with H2 = 4. We want to apply Proposition

3.1.7 to conclude that H is a very ample line bundle and hence it induces and embedding of S as

a smooth quartic in P3. For that, first we have to prove that H is a nef divisor. We consider

∆ = {b ∈ Pic(S) | b2 = −2 and b is effective}, given b ∈ ∆, we can define a Picard-Lefchetz reflection

sb as

sb : Pic(S) ! Pic(S)

D 7! D + (b ·D)b

By [BPVdV84, chapter VIII, proposition 3.9], the closure Amp(S)∩C+ is a strict fundamental domain

for the action of the group of Picard-Lefchetz reflections on the positive cone C+. This means that,

given sb(H), there is a nef divisor D′ and b′ ∈ ∆, such that sb(H) = s′b(D
′), since the Picard-Lefchetz

reflections are isometries, we have H2 = D′2 = 4 and, after replacing H with D′ if necessary, we can

suppose that H is nef.

Since H is a primitive element of the lattice, Pic(S) = ⟨H,W ⟩, for some element W , and the intersection

matrix is given by Q in (5.2). Note that the second condition of Proposition 3.1.7 is immediately

satisfied. Suppose that there is an irreducible curve E with (E2, H · E) ∈ {(0, 1), (0, 2), (−2, 0)}.
Consider the sublattice ⟨H,E⟩ of Pic(S). This is a rank two lattice with discriminant 4E2−(H ·E)2 =

−1,−4,−8, respectively. By Proposition 2.1.1(3), r(S) divides 1, 4 and 8 respectively. We arrive at

a contradiction since r(S) > 8. Therefore, we conclude that all conditions of Proposition 3.1.7 are

satisfied and H is very ample. Finally, the image of ι|H| is a smooth quartic of P3 since H2 = 4.

Remark 5.1.3. For sake of completeness, we describe the situation of K3 surfaces with ρ(S) = 2,

r(S) = 8 and Pic(S) representing 4. Let H be a nef divisor with H2 = 4. Since H is a primitive

element and as in Lemma 5.1.1, there is exits a divisor D such that Pic(S) = ZH ⊕ ZD and the

intersection matrix has the form (
4 0

0 −2

)
.

Since r(S) is not a square number and D has self-intersection −2, the Mori cone NE(S) s generated

by two rational curves, by Proposition 3.5.1. One can prove that D is one of the two rational curves.

Moreover, the rational map φ|H| : S ! P3 induced by |H| is a morphism contracting uniquely the

rational curve D. Therefore, the image S̃ of S under this morphism is a quartic in P3 is smooth apart

from a unique A1-singularity and Cl(S̃) ∼= Z. Gizatullin’s problem for S̃ ⊂ P3 was solved in [ACM23,

Theorem B]. They conclude that for a general such S̃ ∈ P3, any automorphism comes from a Cremona

transformation of the ambient space.

Now, we investigate the automorphism group Aut(S) of S. We first rule out some possibilities for the

Picard lattice.

65



Proposition 5.1.4. The lattices U(k) for k ∈ {1, 2, 3, 11}, ⟨2⟩ ⊕ ⟨−2⟩ and H5 do not occur as the

Picard lattice of a smooth quartic surface S ⊂ P3 with ρ(S) = 2.

Proof. By Lemma 5.1.1 and Proposition 5.1.2, a hyperbolic lattice L of rank two occurs as the lattice

of a smooth quartic surface S ⊂ P3 if and only if L represents 4 and disc(L) > 8. The lattices U , U(2),

⟨2⟩ ⊕ ⟨−2⟩ and H5 have discriminant −1,−4,−4,−5, respectively. Moreover, the lattices U(3) and

U(11) do not represent 4, since the self-intersection of any element x is a multiple of 3 or 11. Hence,

we have proven the desired result.

Proposition 5.1.5. Let S ⊂ P3 be a smooth quartic with ρ(S) = 2. Any non-trivial automorphism

f of S of finite order has order two with invariant lattice H2(S,Z)f∗
= ⟨A⟩, for a unique ample class

A ∈ Pic(S) with A2 = 2.

Proof. Let f ∈ Aut(S) be a non-trivial automorphism of finite order n and p a prime factor of n. The

automorphism g := fn/p has order p, it is non-symplectic and 0 ̸= H2(S,Z)g∗ ⊂ Pic(S) by Proposition

3.5.3. Thus, H2(S,Z)g∗ has either rank one or two. In the latter case, Pic(S) = H2(S,Z)g∗ is one of the

following possibilities: U , U(2), U(3), U(11), ⟨2⟩ ⊕ ⟨−2⟩ or H5, by Proposition 3.5.3. This contradicts

Proposition 5.1.4. Hence p = 2 and we are in case (2) of Proposition 3.5.5, i.e., H2(S,Z)g∗ = ⟨A⟩, for

some ample class A ∈ Pic(S) with A2 = 2. In particular, this implies that f is an automorphism of

order n = 2k. Our goal now is to prove that k = 1, thus f = g and we obtain the desired conclusion.

Assume k ≥ 2, thus h = fn/4 is an automorphism of order 4 and the automorphism g of order two

above satisfies g = fn/2 = h2. Moreover, H2(S,Z)h∗ is not trivial. The induced isometry h∗ ̸= id of

H2(S,Z) has also order 4 and it could be h∗ = id, or has order 2 or 4 on the Picard lattice Pic(S),

which is not possible. Indeed, it does not have order 4 by Lemma 2.1.20, and if h∗ = id or it has order

2, we get that g∗ = id on Pic(S) and so, H2(S,Z)g∗ = Pic(S); which is not possible.

Remark 5.1.6. The proof of Proposition 3.5.5(2) establishes that, in particular, every involution of

a smooth quartic surface S ⊂ P3 with Picard rank ρ(S) = 2 is geometrically realizable as the cover

involution of the double cover S −! P2 associated to a unique ample class A ∈ Pic(S) with A2 = 2.

Recall the group Aut(P3;S) = {φ ∈ Aut(P3)|φ(S) = S} of the regular maps of P3 stabilizing S.

Matsumura and Monsky proved in [MM64, Theorem 1] that any regular map of P3 stabilizing a

smooth quartic surface S ⊂ P3 (of any Picard rank) induces a finite order automorphism of S. A proof

of this fact can also be found in [Ogu13, Theorem 3.2], which we use to obtain the following result.

Proposition 5.1.7. Let S ⊂ P3 be a smooth quartic surface with ρ(S) = 2. Then Aut(P3;S) = {1},
i.e., no non-trivial automorphism of S comes from automorphism of P3.
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Proof. The map Aut(P3;S) ! Aut(S) defined by the restriction φ 7! φ|S is well-defined and injective.

By Section 3.3, Aut(S) is discrete and so is Aut(P3;S). Moreover, Aut(P3) = PGL4(C) is an affine

variety and Aut(P3;S) is a Zariski closed, which then is finite.

Let φ ∈ Aut(P3;S) be a non-trivial regular map of P3 and set f := φ|S ∈ Aut(S). Then f is not

trivial and has order two, by the reasoning above and Proposition 5.1.5. Since φ is an automorphism

of P3 stabilizing S, f preserves the hyperplane class H, i.e., f∗H = H. Thus, H ∈ H2(S,Z)f must be

a multiple of an ample divisor A with A2 = 2, which is absurd since H is primitive.

The last proposition tells us that it remains to investigate non-regular Cremona transformations of

P3 preserving the quartic S. Proposition 4.1.4 asserts that the existence of a non-regular Cremona

transformation stabilizing a quartic surface S ⊂ P3 forces the existence of a curve C ⊂ S of degree

d < 16 that is not a complete intersection of S with another surface in P3. Combining this with

Proposition 5.1.7, we conclude that Problem 1 is solved for surfaces that do not contain curves of

degree < 16 that are not complete intersection. This is a condition that can be read off from the

Picard lattice of the quartic, which is determined by its discriminant. Indeed, the main result of this

section is the following.

Theorem 5.1.8 (Theorem A). Let S ⊂ P3 be a smooth quartic surface with ρ(S) = 2 and discriminant

r(S) > 233. Then, there does not exist a curve C ⊂ S of degree < 16 that is not a complete intersection.

Consequently, Bir(P3;S) = {1}.

Proof. Let S ⊂ P3 be as the hypothesis and H the class of a hyperplane section. Thus, we can write

Pic(S) = ZH ⊕ ZW for some divisor W , and the intersection matrix is given by Q as in (5.2). We

will prove that every curve C ⊂ S that has degree d < 16 is of the form C = S ∩ T , where T is a

hypersurface of P3. Hence the result follows from Propositions 4.1.4 and 5.1.7.

Given a curve C ⊂ S, it has degree d = H · C and self-intersection C2 ≥ −2 by Proposition 3.1.5(2).

Assume d < 16 and C = mH + nW for some integers m,n. From Lemma 2.1.16(1), we get that

−8 ≤ 4C2 = d2 − r(S)n2 ≤ 225− r(S)n2 =⇒ 233n2 < r(S)n2 ≤ 233.

As n is an integer number, the last inequality is satisfied only if n = 0. Therefore, C = mH in Pic(S).

Now, denote by ι = φ|H| : S ↪! P3 the corresponding embedding. The following exact sequence

0 −! OP3(−4 +m) −! OP3(m) −! ι∗OS(m) −! 0

induces the following one in cohomology

H0(P3,OP3(m)) −! H0(P3, ι∗OS(m)) −! H1(P3,OP3(−4 +m)).
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Since H1(P3,OP3(l)) = 0 for any l ∈ Z, the first map in the last exact sequence is surjective, which

implies that C is the intersection of S and a hypersurface T of P3.

We point out that Theorem 5.1.8 generalizes Example 5.0.2. Indeed, the surfaces Sb in Example

5.0.2 are assumed to be Aut-general, as symplectic and anti-symplectic automorphisms are easier to

handle. This assumption ensures that Aut(Sb) = Z and allows Oguiso to conclude that no non-trivial

automorphism of Sb arises from Bir(P3). However, if they are not Aut-general, their automorphism

group contains Z as a finite index subgroup, and the realization of the whole automorphism group

Aut(S) as elements of Bir(P3) still holds since r(Sb) = 16(b2 − 1) > 233.

5.1.1 A counter-example for Oguiso’s question In this subsection, we present

smooth quartic surfaces where no non-trivial automorphism of the surfaces arises from any Cremona

transformation. Specifically, these surfaces possess finite-order automorphisms, providing a negative

answer to Problem 2 posed by Oguiso.

Example 5.1.9. Let b ≥ 16 be an integer and S = Sb ⊂ P3 be a smooth quartic surface with Picard

lattice Pic(S) = ZH ⊕ ZA and intersection matrix given by(
4 b

b 2

)
.

Since r(S) = b2−8 > 233, no non-trivial elements of Aut(S) are induced by birational maps in Bir(P3).

Moreover, Aut(S) contains automorphisms of finite order since at least a copy of Z2 is inside it. Recall

by Proposition 5.1.5 that any finite order automorphism is an involution. Therefore, the involution

that generates Z2, and hence all involutions of S, are not the restriction of a Cremona transformation

of P3. Let us briefly show the existence of these surfaces. Notice that any rank two lattice with bilinear

form given by the matrix above is even with signature (1, 1). By Theorem 3.4.8, there exists a K3

surface S with Pic(S) as above, and by Proposition 5.1.2, every such K3 S is a smooth quartic in P3.

Moreover, A is an ample divisor with A2 = 2, by Proposition 3.5.2. Hence, the finite index subgroup

Aut±(S) ⊂ Aut(S) of symplectic and anti-symplectic automorphisms of S is either Aut±(S) = Z2 or

Aut±(S) = Z2 ∗ Z2 by Corollary 3.5.6.

5.2 The low discriminant case

In this section, we examine the remaining cases to provide a complete resolution of Gizatullin’s problem.

Let S ⊂ P3 be a smooth quartic surface with Picard rank 2, and φ : P3 99K P3 a birational map. As

explained in Remark 4.2.8, the condition φ(S) = S is satisfied if and only if φ is volume preserving
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with respect to the Calabi-Yau pair (P3, S). Therefore, we employ the volume-preserving Sarkisov

program introduced in Section 4.2.

According to Takahashi’s result, the classical Sarkisov program establishes that the non-equiality

Bir(P3;S) ̸= Aut(P3;S) imposes constraints on the degrees of curves on S that are not complete

intersections. By employing the specialized volume-preserving version of the Sarkisov program, we

additionally derive constraints on the genus of such curves. This leads us to the following proposition.

Proposition 5.2.1. Let S ⊂ P3 be a smooth quartic surface with Picard rank 2. Suppose that

Bir(P3;S) ̸= Aut(P3;S). Then there is a smooth curve C ⊂ S of genus g and degree d such that the

pair (g, d) belongs to the list (†) of Theorem 4.3.5.

Proof. Suppose that there exists a birational map φ ∈ Bir(P3;S) \ Aut(P3;S). By Theorem 4.2.11,

there exists a factorization of φ as a composition of volume preserving Sarkisov links. Since ρ(P3) = 1,

the first Sarkisov link in the decomposition necessarily starts with a volume preserving divisorial

contraction X ! P3. By Proposition 4.2.12, X ! P3 is the blowup of P3 along a curve C ′ ⊂
S. By Lemma 4.3.2, X ! Spec(C) is a rank 2 fibration, and so Proposition 4.3.11 implies that

(pa(C
′), deg(C ′)) belongs to the list (†). A general member C in the linear system |C ′| of S is a

smooth curve of genus g and degree d with (g, d) = (pa(C
′),deg(C ′)), and the result follows.

In what follows, we adopt the notation introduced in Section 5.1. In particular, we denote by H the

class of a hyperplane section of S ⊂ P3. Given a curve C ⊂ S, the arithmetic genus pa and degree d

of C are given by (pa, d) =
(
C2

2 + 1, C ·H
)
.

Corollary 5.2.2. Let S be a smooth quartic surface with Picard rank 2 and discriminant r(S). If

r(S) > 57 or r(S) = 52, then

Bir(P3;S) = Aut(P3;S) = {1}.

Proof. Let S be a smooth quartic surface with Picard rank 2 and discriminant r(S). Recall from

Section 5.1 that r(S) ≡ 0, 1, 4 (mod 8). Suppose that there exists a birational map φ ∈ Bir(P3;S) \
Aut(P3;S). By Proposition 5.2.1, there is a curve C ⊂ S with arithmetic genus pa and degree d

satisfying (pa, d) =
(
C2

2 + 1, C ·H
)
∈ (†). Consider the sublattice L of Pic(S) spanned by H and C.

It has rank 2 and the opposite of its discriminant r′ = −disc(L) = (C ·H)2 − 4C2 = d2 − 8(pa − 1).

We compute r′ for each pair (pa, d) ∈ (†), and list the possible values of r′ in the same order as the
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corresponding pair in (†):

r′ ∈


9, 12, 17, 24, 33, 44, 57, 9, 16, 25, 36, 49,

17, 28, 41, 56, 20, 33, 48, 12, 25, 40, 17, 32,

24, 41, 16, 33, 25, 17, 9, 28, 20, 17

 .

Since r(S) = −disc
(
Pic(S)

)
must divide r′ = −disc(L) ≤ 57, we conclude that r(S) ≤ 57. Among

the integers r(S) with r(S) ≡ 0, 1, 4 (mod 8) and 9 ≤ r(S) ≤ 57, the only one that does not divide any

r′ in the above list is r(S) = 52.

For quartic surfaces with Picard rank 2, Corollary 5.2.2 reduces Problem 1 to surfaces S with discrim-

inant r(S) ≤ 57 and r(S) ̸= 52. The next proposition describes the automorphism group Aut(S) in

these cases.

Proposition 5.2.3. The sets

R0 = {9, 12, 16, 24, 25, 33, 36, 44, 49, 57},

R1 = {17, 41},

R2 = {28, 56}, and

R3 = {20, 32, 40, 48}

give a partition of all integers r(S) ≤ 57, r(S) ̸= 52, such that r(S) is the discriminant of a smooth

quartic surface S ⊂ P3 with ρ(S) = 2.

If the quartic surface S is Aut-general, then its automorphism group is described as follows:

Aut(S) ∼=


{1}, if r ∈ R0;

Z2, if r ∈ R1;

Z2 ∗ Z2, if r ∈ R2;

Z, if r ∈ R3.

Proof. As before, we denote by H the class of a hyperplane section of S and let {H,W} be a basis of

Pic(S). With respect to this basis, the intersection product in Pic(S) is given by the matrix (5.2), and

r(S) ≡ 0, 1, 4 (mod 8). By Lemma 5.1.1, r(S) > 8. By Theorem 3.4.8, and Proposition 5.1.2, every

even lattice with bilinear form given by (5.2), signature (1, 1) and discriminant 8 < r(S) ≤ 57 can be

realized as the Picard lattice of a smooth quartic surface. This proves the first assertion.
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Suppose now that S is Aut-general, i.e., Aut(S) = Aut±(S). By Proposition 3.5.6, the automorphism

group of S is completely determined by the existence of a divisor D with D2 ∈ {0,−2} and an ample

divisor A with A2 = 2. By Lemma 2.1.16, the existence of a divisor ∆ on S with ∆2 = k, can be

determined by the existence of an integer solution of the generalized Pell equation x2 − r(S)y2 = 4k.

The second assertion then follows from checking the existence of integer solutions of the corresponding

generalized Pell equations for each value of r(S) ∈ Ri, i ∈ {0, 1, 2, 3}.

For each r(S) ∈ R0∪R1, either the equation x2−r(S)y2 = 0 or the equation x2−r(S)y2 = −8 has an

integer solution, as illustrated in the following table. This implies that Aut(S) = {1} or Aut(S) ∼= Z2.

r(S) 9 12 16 17 24 25 33 36 41 44 49 57

(x, y) (1, 1) (2, 1) (4, 1) (3, 1) (4, 1) (5, 1) (5, 1) (6, 1) (19, 3) (6, 1) (7, 1) (7, 1)

x2 − r(S)y2 −8 −8 0 −8 −8 0 −8 0 −8 −8 0 −8

Suppose that r(S) ∈ R0 = {9, 12, 16, 24, 25, 33, 36, 44, 49, 57}. In order to show that Aut(S) = {1}, we

will show that there are no divisors with square 2, or equivalently that x2 − r(S)y2 = 8 does not have

integer solutions. If r(S) ∈ {9, 12, 24, 33, 36, 44, 57}, then either r(S) ≡ 0 (mod 3) or r(S) ≡ 0 (mod 11).

So the equation x2 − r(S)y2 = 8 reduces to either x2 ≡ 2 (mod 3) or x2 ≡ 8 (mod 11), and one checks

easily that these have no integer solution. If r(S) ∈ {16, 25, 49}, then r(S) = t2 for an appropriate

integer t > 1. We set z = ty and rewrite the equation x2 − r(S)y2 = 8 as x2 − z2 = 8. An integer

solution (x, z) must satisfy x2 > z2 > 1. Then, from

8 = x2 − z2 = |x|2 − |z|2 ≥ |x|2 − (|x| − 1)2 = 2|x| − 1,

we conclude that 2 ≤ |z| < |x| ≤ 4, and one checks easily that there are no integer solutions.

Suppose that r(S) ∈ R1 = {17, 41}. If r(S) = b2 − 8c = 17, then (x, y) = (5, 1) and (5,−1) are

solutions of x2 − 17y2 = 8 and one of them satisfies that z := x−yb
4 ∈ Z. For such pair (x, y),

A = zH + yW ∈ Pic(S) is the corresponding divisor on S with A2 = 2. Note that A · H = 5,

Pic(S) = ⟨H,A⟩, and A is effective. By Proposition 3.5.2, A is nef (and big). To show that A is ample,

it is enough to check that there is no rational curve Γ such that A · Γ = 0. Indeed, if there is such

a curve Γ, then E = A + Γ ∈ Pic(S) satisfies E2 = 0, and so 0 = 4E2 = (H · E)2 − 17m2, where

m ∈ Z is such that E = nH + mW in Pic(S). This is not possible since r(S) = 17 is not a square

number. When r(S) = 41, we argue in the same way, with (x, y) = (7, 1), (7,−1) being solutions of

x2 − 41y2 = 8.

If r(S) ∈ R2 = {28, 56}, then r(S) ≡ 0 (mod 7). So the equation x2 − r(S)y2 = −8 reduces to

x2 ≡ 6 (mod 7), which does not have solutions. Together with the fact that r(S) is not a square

number, this implies the non-existence of divisors on S with self-intersection 0 or −2. In order to

show that Aut(S) ∼= Z2 ∗ Z2, we must verify the existence of A ∈ Pic(S) ample with A2 = 2. Indeed,
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the pair (x, y) = (6, 1) (respectively (x, y) = (8, 1)) is a solution of the equation x2 − r(S)y2 = 8 for

r(S) = 28 (respectively r(S) = 56), and the corresponding divisor A is automatically ample since S

has no rational curves.

Finally, suppose that r(S) ∈ R3 = {20, 32, 40, 48}. Since r(S) is not a square number, x2 − r(S)y2 =

0 does not have integer solutions. If r(S) ∈ {20, 40}, then r(S) ≡ 0 (mod 5). So the equations

x2 − r(S)y2 = −8 and x2 − r(S)y2 = 8 reduce to x2 ≡ 3 and x2 ≡ 2 (mod 5), none of which has

solutions. If r(S) ∈ {32, 48}, then write r(S) = 16s for the appropriate integer s ∈ {2, 3}. If (x, y) is a

solution of x2 − 16sy2 = −8 or x2 − 16sy2 = 8, then x = 2z is an even integer. So these equations can

be simplified to z2 − 4sy2 = −2 and z2 − 4sy2 = 2, and then reduced to z2 ≡ 2 (mod 4), which does

not have solutions.

Next we show that whenever r(S) ∈ R1 ∪R2 ∪R3 we can find a curve C ⊂ S as in Proposition 5.2.1

such that Pic(S) = ZH ⊕ ZC, where H denotes the class of a hyperplane section. This allows us to

describe explicit generators of Aut(S) via their action on Pic(S) in each case.

Proposition 5.2.4. Let S be an Aut-general smooth quartic surface with ρ(S) = 2 and discriminant

r(S) ∈ R1 ∪R2 ∪R3.

1. There is a smooth curve C ⊂ S of genus g and degree d such that Pic(S) = ZH ⊕ ZC, where

(g, d) depends on r(S) as described in the following table:

r(S) 17 41 28 56 20 32 40 48

(g, d) (14, 11) (6, 9) (10, 10) (2, 8) (11, 10) (5, 8) (4, 8) (3, 8)

Aut(S) Z2 Z2 ∗ Z2 Z

(C)

2. With respect to the basis {H,C}, the action of Aut(S) on Pic(S) is described as follows:

r(S) 17 28 20 40

Aut(S)
〈(

19 72
−5 −19

)〉 〈(
23 88
−6 −23

)
,
(−7 −8

6 7

)〉 〈(
29 40
−8 −11

)〉 〈(
43 18

−12 −5

)〉
r(S) 41 56 32 48

Aut(S)
〈(

27 104
−7 −27

)〉 〈(
31 120
−8 −31

)
,
(−1 0

8 1

)〉 〈(
41 24

−12 −7

)〉 〈(
209 56
−56 −15

)〉
(M)

Proof. To prove (1), write Pic(S) = ZH ⊕ZW . As in (5.2), the intersection matrix of S with respect

to the basis {H,W} can be written as

Q =

(
4 b

b 2c

)
,
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so that r(S) = b2−8c. Notice that for each r(S) ∈ R1∪R2∪R3, the corresponding pair (g, d) listed on

table (C) satisfies r(S) = d2 − 8(g − 1). By Lemma 5.1.1, there exists a divisor D ∈ Pic(S) satisfying

H ·D = d and D2 = 2g − 2 and Pic(S) = ZH ⊕ ZD. Furthermore, since r(S) ̸= 9, Proposition 3.5.2

guarantees the existence of a smooth curve C ∈ |D|, allowing us to conclude that Pic(S) = ZH ⊕ZC.

To prove (2), we first notice that each matrix in the table represents an isometry ϕ ∈ O(Pic(S))

since ϕTQϕ = Q. Moreover, in each case, either (ϕ − id)Q−1 ∈ M2×2(Z) or (ϕ + id)Q−1 ∈ M2×2(Z).
Therefore, by Proposition 3.5.7, the isometry ϕ ∈ O(Pic(S)) is induced by an automorphism f ∈
Aut(S) if and only if ϕH is ample. We now consider separately each case r(S) ∈ Ri for i ∈ {1, 2, 3}.

Suppose that r(S) ∈ R3. Then Aut(S) ∼= Z and S does not contain rational curves (see Corollary 3.5.6).

We can check that ϕH ·H > 0 and (ϕH)2 > 0, and so ϕH is ample by Proposition 3.1.6. Therefore,

the isometry ϕ ∈ O(Pic(S)) is induced by an automorphism f ∈ Aut(S). For r(S) = 20, 32, 40, 48, the

corresponding minimal integer solutions of (∗) are (α1, β1) = (4, 5), (7, 4), (43, 18) and (4, 1), respec-

tively. Moreover, ϕ = hk, where h is the matrix of Proposition 3.5.7(2) and k = 3, 2, 1, 4, respectively.

In each case, ϕ is the minimal power of h satisfying the Gluing and Torelli conditions stated in Propo-

sition 3.5.7, and so f is the generator of Aut(S).

Suppose that r(S) ∈ R2. Then Aut(S) ∼= Z2 ∗ Z2
∼= Z ⋊ Z2 and S does not contain rational curves

(see Corollary 3.5.6). For a fixed r(S) ∈ R2, we denote by ϕ1 and ϕ2 the two isometries displayed

in the table. Exactly as in the previous case, we check that ϕiH is ample, i ∈ {1, 2}, and so ϕ1 and

ϕ2 are induced by automorphisms f1, f2 ∈ Aut(S) respectively. Notice that ϕ1 and ϕ2 have the form

described in Proposition 3.5.7(1), and so f1 and f2 are involutions of S. To see that they are the

generators of Aut(S), we check that f1f2 generates the maximal copy of Z in Aut(S). Indeed, for

r(S) = 28, 56, the minimal solutions of (∗) are (α1, β1) = (23, 27) and (31, 4), respectively. In both

cases ϕ1ϕ2 = h2, and h2 is the minimal power of h satisfying the Gluing and Torelli conditions stated

in Proposition 3.5.7.

Suppose that r(S) ∈ R1. Then Aut(S) = ⟨f⟩ ∼= Z2. By Proposition 5.1.5 and Remark 5.1.6, f∗ is the

reflection along the line generated by the unique ample class A such that A2 = 2. Taking W = C in

the proof of Proposition 5.2.3, our argument there shows that the divisor A = 4H − C is ample and

A2 = 2. So f∗ : N1(S)R ! N1(S)R is the reflection given by:

α 7! (A · α)A− α.

One checks directly that, for each value of r(S) ∈ R1, the isometry ϕ represented by the matrix in

table (M) coincides with this reflection.

Remark 5.2.5. In all cases of Proposition 5.2.4, the divisor D = 4H −C is ample. This appeared in

the proof for r(S) ∈ R1. For r(S) ∈ R2 or R3, D is nef and big, and S contains no rational curves, so
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D is automatically ample.

Now that we have explicitly described the action of the generators of Aut(S) on Pic(S) when r(S) ∈
R1 ∪ R2 ∪ R3, we proceed to construct Cremona transformations realizing them. We will use the

following criterion to determine when S ⊂ P3 is projectively equivalent to its image under a Cremona

transformation of P3.

Lemma 5.2.6. Let ι : S ↪! Pn be a subvariety embedded by a complete linear system |H|. Let

φ ∈ Bir(Pn) be a Cremona transformation whose restriction to S is an isomorphism onto its image

S′ = φ(S) ⊂ Pn, and assume that S′ is embedded by a complete linear system in Pn. Then S and

S′ are projectively equivalent in Pn if and only if there is an automorphism f ∈ Aut(S) fitting into a

commutative diagram:

Pn φ // Pn

S

ι

OO 77

f
// S .

ι

OO

Proof. Denote by H ′ ∈ Pic(S) the pullback of the hyperplane class of Pn under the embedding φ|S ◦ ι.
By assumption, φ|S ◦ ι : S ↪! Pn is given by the complete linear system |H ′|. Hence, the condition that

f ∈ Aut(S) fits into the commutative diagram above is equivalent to the condition H ′ = f∗H.

In order to construct Cremona transformations realizing the generators of Aut(S) described in Propo-

sition 5.2.4, we will consider the Sarkisov links initiated by blowing up the curves C ⊂ S listed in

Proposition 5.2.4. In the case r(S) = 20, we will also need a curve C ′ ∈ |4H − C|, which has genus

and degree (g, d) = (3, 6). We recall some numerics of these Sarkisov links, which can be recovered

from [CM13, Table 1] and [BL12, Example 4.7(ii)].

Remark 5.2.7 ([CM13, Table 1], [BL12, Example 4.7(ii)]). Let C ⊂ P3 be a smooth curve of genus

g and degree d, where (g, d) is one of the pairs in (C) above or (g, d) = (3, 6). Suppose that C is

general in the Hilbert scheme Hg,d, so that it satisfies conditions (1) and (2) of Theorem 4.3.5. By

Theorem 4.3.5, the blowup p : X ! P3 of C initiates a Sarkisov link χ : P3 99K Y fitting into a diagram:

X
ϕ //

p

~~

X+

p+

!!
P3 χ // Y,

where ϕ is a flop or an isomorphism, Y is a smooth Fano 3-fold with ρ(Y ) = 1, and p+ : X+ ! Y is

the blowup of Y along a smooth curve C+ of genus g+ and degree d+. Here, the degree is measured

with respect to the ample generator of Pic(Y ).

74



Denote by H ∈ Pic(X) the pullback of the hyperplane class of P3, by H+ ∈ Pic(X+) the pullback of

the ample generator of Pic(Y ), and by E and E+ the exceptional divisors of p and p+, respectively.

With respect to the bases {H+, E+} of Pic(X+) and {H,E} of Pic(X), the isomorphism ϕ∗ takes the

form

ϕ∗ =

(
a ac−1

b

−b −c

)
for suitable integers a, b and c.

For each pair (g, d) in (C) above or (g, d) = (3, 6), the Fano 3-fold Y , as well as the values of g+, d+,

a, b and c, are displayed in the following table:

(g, d) (14, 11) (6, 9) (10, 10) (2, 8) (11, 10) (3, 6) (5, 8) (4, 8) (3, 8)

Y P3 P3 P3 P3 P3 P3 P3 X5 P3

(g+, d+) (14, 11) (6, 9) (10, 10) (2, 8) (11, 10) (3, 6) (5, 8) (4, 10) (3, 8)

(a, b, c) (19, 5, 19) (27, 7, 27) (23, 6, 23) (31, 8, 31) (11, 3, 11) (3, 1, 3) (7, 2, 7) (11, 3, 5) (15, 4, 15)

(S)

We are now prepared to identify the generators of the automorphism group of an Aut-general smooth

quartic surface S with Picard rank 2 and discriminant r(S) ∈ R1∪R2∪R3 as restrictions of Cremona

transformations of P3. These Cremona transformations will be constructed as compositions of Sarkisov

links initiated by blowing up smooth curves C ⊂ S with invariants (g, d) listed in Table (C). However,

for the blowup of C to initiate a Sarkisov link, it is necessary that C satisfies the generality conditions

(1) and (2) of Theorem 4.3.5. These conditions are guaranteed when C meets the assumptions of

Corollary 4.3.10, specifically Pic(S) is generated by the classes of hyperplane section H and C, and

4H − C is ample on S.

Lemma 5.2.8. Let S be a smooth quartic surface with Picard rank 2 and discriminant r(S) ∈ R1∪R2∪
R3. Let (g, d) be the pair of invariants in Table (C) corresponding to r(S), or (g, d) = (3, 6) if r(S) = 20.

Then there exists a smooth curve C ⊂ S of genus and degree (g, d) such that Pic(S) = ZH ⊕ZC, and

4H − C is ample on S.

Proof. If (g, d) is one of the pairs of Table (C), then the existence of a smooth curve C of genus

and degree (g, d) is guaranteed by Proposition 5.2.4. If r(S) = 20 and (g, d) = (3, 6), then Pic(S) =

ZH⊕ZW , where W is a curve of genus and degree (11, 10), again by Proposition 5.2.4. By Proposition

3.5.2, a general element C ∈ |4H −W | is a smooth curve of genus and degree (3, 6).

We now show that the divisor D = 4H − C is ample. For (g, d) in Table (C) this is Remark 5.2.5; for

(g, d) = (3, 6), D is a nef and big divisor and S contains no rational curves (see the proof of Proposition

75



5.2.3), therefore D is ample.

Proposition 5.2.9 (Z2-case). Let S be an Aut-general smooth quartic surface with ρ(S) = 2 and

discriminant r(S) ∈ {17, 41}. Then the restriction homomorphism Bir(P3;S) ! Aut(S) ∼= Z2 is

surjective.

Proof. We first treat the case r(S) = 41. By Proposition 5.2.4, Pic(S) = ZH ⊕ ZC, where C is a

smooth curve of genus and degree (6, 9). Denote by p : X ! P3 the blowup of P3 along C, and by

S̃ ⊂ X the strict transform of S. By Lemma 5.2.8 and Remark 5.2.7, X ! P3 initiates a Sarkisov link

χ : P3 99K P3. More precisely, χ fits into a commutative diagram:

X
ϕ1 //

p

~~

X+

p+

""
P3 χ // P3.

Using the notation of Remark 5.2.7, we first prove that χ restricts to an isomorphism on S. Indeed,

the restriction of p to S̃ is clearly an isomorphism onto S. Moreover, for any curve γ ⊂ X flopped by

ϕ, we have S̃ · γ = −KX · γ = 0. Since −KX |S̃ = 4H − C is ample on S̃ by Remark 5.2.5, γ must be

disjoint from S̃. Since ϕ preserves anti-canonical sections, the class of S+ = ϕ(S̃) on X+ is 4H+−E+.

So, for any curve e+ ⊂ X+ contracted by p+, S+ · e+ = 1, and so p+ restricts to an isomorphism on

S+. We thus conclude that χ|S : S 99K χ(S) is an isomorphism.

By Remark 5.2.7, in terms of the bases {H+, E+} for N1(X+) and {H,E} for N1(X), the isomorphism

ϕ∗ : N1(X+) ! N1(X) is given by the matrix

ϕ∗ =

(
27 104

−7 −27

)
.

Notice that this is the same matrix as the one corresponding to the generator τ of Aut(S) in Table

(M). In particular, τ∗H+ = H and thus, by Lemma 5.2.6, χ(S) is projectively equivalent to S. Up

to composing it with an automorphism of P3, we may assume that χ ∈ Bir(P3;S) and χ|S = τ . This

proves that the restriction homomorphism Bir(P3;S) ! Aut(S) = ⟨τ⟩ is surjective.

For r(S) = 17, we pick C ⊂ S a smooth curve of genus and degree (14, 11), and follow the exact same

argument. The numerics for the corresponding link are given again in Remark 5.2.7.

Proposition 5.2.10 (Z2 ∗ Z2-case). Let S be an Aut-general smooth quartic surface with ρ(S) = 2

and discriminant r(S) ∈ {28, 56}. Then the restriction homomorphism Bir(P3;S) ! Aut(S) ∼= Z2 ∗Z2

is surjective.

Proof. We first treat the case r(S) = 56. By Proposition 5.2.4, Pic(S) = ZH ⊕ ZC1, where C1 is a

smooth curve of genus and degree (2, 8). Moreover, Aut(S) ∼= Z2 ∗ Z2 is generated by two involutions
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τ1 and τ2 that act on Pic(S) as

τ∗1 =

(
31 120

−8 −31

)
and τ∗2 =

(
−1 0

8 1

)

with respect to the basis {H,C1}.

Denote by X1 the blowup of P3 along C1. By Lemma 5.2.8 and Remark 5.2.7, X1 ! P3 initiates

a Sarkisov link χ1 : P3 99K P3. Arguing exactly as in the proof of Proposition 5.2.9, we see that χ1

restricts to an isomorphism on S and, after composing it with an automorphism of P3, we may assume

that χ1(S) = S and χ1|S = τ1.

As for the second generator τ2 of Aut(S), let C2 be a smooth element of |4H − C1|. Then C2 is

also of genus and degree (2, 8), and so the blowup X2 ! P3 along C2 again initiates a Sarkisov link

χ2 : P3 99K P3. As before, after composing it with an automorphism of P3, we may assume that

χ2(S) = S, and the induced automorphism on S acts on Pic(S) as(
31 120

−8 −31

)

with respect to the basis {H,C2}. Changing the basis to {H,C1}, we get

χ2|∗S =

(
1 4

0 −1

)(
31 120

−8 −31

)(
1 4

0 −1

)−1

=

(
−1 0

8 1

)
.

So χi|S = τi for i = 1, 2, and we get a surjection Bir(P3;S) ! Aut(S) = ⟨τ1, τ2⟩.

The case r(S) = 28 is analogous: we choose C1 to be a smooth curve of genus and degree (10, 10)

and C2 a smooth element of |5H − C1|. Then C2 is also a curve of genus and degree (10, 10), and the

construction above works verbatim.

Remark 5.2.11. The four links described in the proofs of Propositions 5.2.9 and 5.2.10, initiated

by the blowup of P3 along smooth curves of genus and degree (6, 9), (14, 11), (2, 8) and (10, 10) were

described in detail in [Zik23a, Proposition 3.1 and Remark 3.2]. Each one is a birational involution

χ : P3 99K P3 fitting into a commutative diagram:

X

p

��

&&

ϕ // X

xx p

��
Z
α

YY

P3
χ

// P3 ,

where ϕ : X // X is a flop, the anti-canonical model Z of X is a double cover of P3 ramified along a

sextic hypersurface, and α : Z ! Z is the the deck transformation of Z over P3.
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Proposition 5.2.12 (Z-case). Let S be an Aut-general smooth quartic surface with ρ(S) = 2 and

discriminant r(S) ∈ {20, 32, 40, 48}. Then the restriction Bir(P3;S) ! Aut(S) ∼= Z is surjective.

Proof. We first treat the case r(S) = 40. By Proposition 5.2.4, there is a smooth curve C1 ⊂ S of

genus and degree (4, 8) such that Pic(S) = ZH⊕ZC1. By Lemma 5.2.8 and Remark 5.2.7, the blowup

p1 : X1 ! P3 along C1 initiates a Sarkisov link χ1 : P3 99K X5 that fits into a commutative diagram:

X1
ϕ1 //

p1

~~

X+
1

p+1

!!
P3 χ1 // X5,

where the smooth curve C+
1 ⊂ X5 is the center of the blowup p+1 : X+

1 ! X5, with degree and genus

(4, 10). Recall that the degree is measured with respect to the ample generator of Pic(X5). Set

S1 := χ1(S) ⊂ X5. Arguing as in the proof of Proposition 5.2.9, we see that χ1|S : S ! S1 is an

isomorphism. Set σ1 := χ1|S : S ! S1. By Remark 5.2.7, with respect to the bases {H+, C+
1 } of

Pic(S1) and {H,C1} of Pic(S), σ∗
1 takes the form

σ∗
1 =

(
11 18

−3 −5

)
.

Using Lemma 5.2.6, one can check that S and S1 are not projectively equivalent.

We will now perform a second link. First, note that the surface S1 is a smooth anticanonical surface

in X5, i.e., S1 ∈ | − KX5 |. After identifying S1 with its strict transform in X+
1 , it follows that

−KX+
1
|S1 = 2H+−C+

1 and it is an ample class on S1. Hence, similar to Proposition 4.3.8, Proposition

4.3.9 and Corollary 4.3.10, the blowup of X5 along any smooth curve in |2H+−C+
1 | is weak Fano and

it initiates a Sarkisov link from X5. Indeed, any general smooth curve C2 ∈ |2H+ − C+
1 | has degree

and genus (4, 10), and so, the Sarkisov link initiated by the blowup of X5 along C2 is the inverse of

a Sarkisov link initiated by the blowup of P3 along a smooth curve C+
2 of genus and degree (4, 8) in

Remark 5.2.7.

Thus, let C2 ⊂ S1 be a smooth element of the linear system |2H+ − C+
1 |. Denote by p2 : X2 ! X5

the blowup of X5 along C2, and χ2 : X5 99K P3 the Sarkisov link initiated from it. Once again, we

follow the notation introduced in Remark 5.2.7. We denote by E+
2 ⊂ X+

2 the exceptional divisor of

the blowup p+2 : X+
2 ! P3, by C+

2 := p+2 (E
+
2 ) ⊂ P3 its center, and set S2 := χ2(S1) ⊂ P3. Arguing as

in the proof of Proposition 5.2.9, we see that the restriction χ2|S1 : S1 ! S2 is an isomorphism. Set

σ2 := χ2|S1 : S1 ! S2, and write A and A+ for the hyperplane classes of S1 and S2, respectively. By

Remark 5.2.7, with respect to the bases {A+, C+
2 } of Pic(S2) and {A,C2} of Pic(S1), σ∗

2 takes the

form

σ∗
2 =

(
5 18

−3 −11

)
.
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A smooth element C ′ ⊂ S2 in the linear system |4A+ − C+
2 | is a curve of genus and degree (4, 8).

Computing the matrix of the composition (σ2 ◦ σ1)
∗ : Pic(S2) ! Pic(S) with respect to the bases

{A+, C ′} of Pic(S2) and {H,C1} of Pic(S), we get:

(σ2 ◦ σ1)∗ =

(
11 18

−3 −5

)(
1 2

0 −1

)(
5 18

−3 −11

)(
1 4

0 −1

)−1

=

(
43 18

−12 −5

)
.

Notice that this is the same matrix as the one corresponding to the generator of Aut(S) in Table (M).

By Lemma 5.2.6, after composing it with an automorphism of P3, we may assume that (χ2◦χ1)(S) = S.

Thus, the composition χ = χ2 ◦ χ1 restricted to S generates Aut(S).

X1
//

p1

~~

X+
1

p+1

!!

X2

p2

~~

// X+
2

p+2

!!
P3 χ1 //

χ

33X5
χ2 // P3

The cases r(S) = 20, 32, 48 are analogous: the birational map χ : P3 99K P3 that stabilizes S and

generates Aut(S) ∼= Z is always the composition of two Sarkisov links χ1 and χ2. In these cases, both

Sarkisov links are Cremona transformation of P3. The first Sarkisov link χ1 : P3 99K P3 is initiated by

the blowup of P3 along a smooth curve C1 ⊂ S of genus and degree (g, d) indicated in the table below,

while the second Sarkisov link χ2 : P3 99K P3 is initiated by the blowup of P3 along a smooth curve

C2 ⊂ χ1(S) such that C2 ∼ 4H+ − C+
1 . The curve C2 has genus and degree (g′, d′) listed in the table

below.

r(S) (g, d) (g′, d′)

20 (11, 10) (3, 6)

32 (5, 8) (5, 8)

48 (3, 8) (3, 8)

(Z)

We are now ready to prove Theorem B:

Theorem 5.2.13 (Theorem B). Let S ⊂ P3 be a smooth quartic surface with Picard rank ρ(S) = 2.

(1) If r(S) > 57 or r(S) = 52, then Bir(P3;S) = {1}.

(2) If r(S) ≤ 57, r(S) ̸= 52 and S is Aut-general, then the restriction map Ψ: Bir(P3;S) ! Aut(S)

is surjective.
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Proof. First suppose that r(S) > 57 or r(S) = 52. Then Bir(P3;S) = Aut(P3;S) = {1} by Corollary

5.2.2.

If r(S) ≤ 57, r(S) ̸= 52 and Aut(S) ̸= {1}, then r(S) ∈ {17, 41} ∪ {28, 56} ∪ {20, 32, 40, 48} by

Proposition 5.2.3. For r(S) in each one of these three sets, we conclude by Propositions 5.2.9, 5.2.10

and 5.2.12, respectively.

Remark 5.2.14. The generality hypothesis in part two of Theorem 5.2.13 is necessary in order to

determine the entire automorphism group Aut(S) and to find its generators by using Proposition 3.5.7.

However, when r(S) < 57, r(S) ̸= 52 and Aut(S) if finite, i.e., Aut(S) = {1} or Aut(S) = Z2, this

assumption can be removed. Indeed, when the finite index subgroup Aut±(S) ⊂ Aut(S) of a smooth

quartic S ⊂ P3 is finite, we have that Aut(S) is finite. Hence, any non-trivial automorphism of S is

an involution and so, Aut±(S) = Aut(S).

5.3 Insights for higher Picard rank: An example

A natural extension of our work is to investigate Gizatullin’s problem for quartics with higher Picard

rank. In this section, we analyze Oguiso’s example (Example 5.0.3), which is the only known example

for Picard rank ≥ 3 where Problem 1 is positively solved. We try to realize the automorphisms of the

quartic surface as Cremona transformations constructed from Sarkisov links. The conclusions of this

section emerged from discussions with Carolina Araujo, Michela Artebani, Cesar Huerta and Manuel

Leal at the V Latin American School of Algebraic Geometry (V ELGA).

Let us first recall some facts on elliptic curves. Let E ⊂ P2 be an elliptic curve. It is known that E has

the structure of a group, on which there is a specified point OE playing the role of the identity element

of the group. From this group structure we get some natural automorphisms of E: the inversion and

the translations. The inversion is the map ιE : E ! E given by p 7! −p, and a translation by a

fixed point q ∈ E is the map tq : E ! E given by p 7! p + q. Note that the automorphisms ιE and

τq := ιE ◦ tq are involutions of E. A proof of the following Lemma is done by exploiting the Weierstrass

form of E.

Lemma 5.3.1 ([Ogu12, Theorem 2.2]). Let E ⊂ P2
k be an elliptic curve over an arbitrary field k.

Then any automorphism of E is the restriction of a Cremona transformation of P2
k.

Now, we describe Example 5.0.3 in more details, following [Ogu12].

Let S ⊂ P3 be a smooth quartic surface with Picard lattice Pic(S) of rank 3, generated by a hyperplane

section H and two skew lines L,M ⊂ §. The matrix associated to the intersection product on S, with
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respect to this basis, is the matrix 
4 1 1

1 −2 0

1 0 −2

 . (5.3)

By looking for elements D ∈ Pic(S) such that H ·D = 1 and D2 = −2, one can conclude that the only

two lines on S are L and M . Moreover, each line determines an elliptic fibration on S. Indeed, consider

the pencil of planes P ⊂ P3 containing L. For each such plane P , P ∩ S = L ∪ EP , where EP is a

plane cubic curve. Note that EP ∈ |H−L|, and so E2
P = (H−L)2 = 0 and EP ·M = (H−L) ·M = 1

on S. Hence, the linear system |H − L| defines an elliptic fibration ϕ|H−L| : S ! P1 with section M .

Similarly, we have the elliptic fibration ϕ|H−M | : S ! P1 with section L. By definition of an elliptic

fibration, the generic fiber of it is an elliptic curve, i.e., a smooth curve of genus one. We can verify

that all the fibers of both fibrations are irreducible.

For the elliptic fibration ϕ|H−L|, we regard M as the zero section, i.e., for each elliptic fiber EP , the

point M ∩ EP ∈ EP is the distinguish point OEP
. For any section C ⊂ S of ϕ|H−L|, it follows that

C · EP = 1 for each fiber EP . Thus, we denote by CEP
∈ EP the intersection point of the section C

with the fiber EP . Therefore, we can define an involution ιL of S whose restriction to each elliptic

fiber EP is the inversion ιEP
, and an automorphism tC of S whose restriction to each elliptic fiber EP

is the translation tCEP
. It can be shown that the set of sections of the elliptic fibration is the set

{Cn ∈ Pic(S)|Cn = (10n2 − 6n)H − (10n2 − 7n)L− (3n− 1)M, n ∈ Z}.

Furthermore, the elliptic fibration ϕ|H−L| is the restriction to S of the linear projection P3 ! P1 from

L. The fibers of this linear projection are precisely the planes P ∼= P2 containing the line L, and the

restriction of these fibers to S are the fibers EP of ϕ|H−L|. The restrictions of ιL and tC to each generic

fiber EP are ιEP
and tCEP

, respectively, and these are induced by Cremona transformations of the

fiber P ∼= P2 by Lemma 5.3.1. It follows that ιL and tC are induced by Cremona transformations of

P3. Similarly, once we regard L as the zero section of the elliptic fibration ϕ|H−M |, we obtained the

map ιM corresponding to the inversion in each elliptic fiber of ϕ|H−M |, which is again, induced by a

Cremona transformation of the ambient space P3.

By describing a fundamental domain for the action of the free product ⟨ιL, ιM , τ⟩ ⊂ Aut(S), where

τ := ιL ◦ tC1 and tC1 is the translation by the section C1 of the elliptic fibration ϕ|H−L|, Oguiso proved

that these three involutions generate the automorphism group of S ⊂ P3, i.e., Aut(S) = ⟨ιL, ιM , τ⟩ ∼=
Z2 ∗Z2 ∗Z2. Therefore, every automorphism of S is the restriction of a birational map of P3. However,

for a more precisely description of such Cremona maps of P3 it is necessary to first find the Weierstrass

form of each elliptic fibration, and then describe the birational maps of P2 realizing the inversions and

translations.
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Our purpose is to describe the Cremona transformations of P3 that realize the generators ιL, ιM and

τ of the automorphism group of S from the Sarkisov links point of view as we did in previous Section

5.2. Hence, we start by describing the action of these generators on the Picard lattice Pic(S), with

respect to the basis {H,L,M}:

ι∗L =


13 12 0

−14 −13 0

6 6 1

 , ι∗M =


13 0 12

6 1 6

−14 0 −13

 , and τ∗ =


5 4 4

−3 −2 −3

−3 −3 −2

 . (5.4)

Each of the involutions above have an invariant lattice with rank two. Indeed, each invariant lattice is

given by

H2(S,Z)ιL = ⟨H − L,M⟩, H2(S,Z)ιM = ⟨H −M,L⟩ and H2(S,Z)τ = ⟨H − L,H −M⟩.

Observe that the two classes of curves C1 = 2H + L+M and C2 = 3H − L−M on S ⊂ P3 are such

that H · Ci = 10 and C2
i = 20. Thus, both of them correspond to classes of curves of type (11, 10).

Note that Pic(S) = ⟨H,C1, H +L⟩ = ⟨H,C2, H +L⟩. Define now the class C ′
i = 4H −Ci. It is follows

that C ′
1 = 2H − L −M and C ′

2 = H + L +M are curves of type (3, 6). If we consider the primitive

sublattice L := ⟨H,C1⟩ ⊂ Pic(S), we conclude that L is isomorphic to the Picard lattice of any smooth

quartic surface S′ ⊂ P3 with ρ(S′) = 2 and r(S′) = 20, from Proposition 5.2.4. For an Aut-general such

surface S′, the automorphism group Aut(S′) ∼= Z is generated by an infinite order automorphism and

it is the restriction of a Cremona transformation φ of P3 which is obtained as follows. The birational

map φ is the composition of a Sarkisov link initiated by the blowup of a curve of type (11, 10) with a

Sarkisov link initiated by the blowup of a curve of type (3, 6) (see Proposition 5.2.12 and table (Z)).

Proposition 5.3.2. Let S ⊂ P3 a smooth quartic surface with Picard rank r(S) = 3 and intersection

matrix given by the matrix (5.3).

1. The only rational curves on S with degree ≤ 10 are L and M .

2. A general member of the linear systems |2H + L + M |, |3H − L − M | and |2H − L − M | is

smooth.

3. Let C1 ∈ |2H + L+M | be general. Then KC1 = OC1(2).

4. Let C2 ∈ |3H − L−M | be general. Then C2 is contained in a unique cubic surface T .

Proof. Let Γ ⊂ Pic(S) be a rational curve. Write Γ = aH + bL+ cM for some integers a, b, c. Then,

−2 = Γ2 = Γ2 = 4a2 − 2b2 − 2c2 + 2ab+ 2ac = −2. Define δ := deg(Γ) = H · Γ = 4a+ b+ c > 0. By

substituting c by δ − 4a− b in Γ2 we get

−2 = Γ2 = −36a2 − 16ab− 4b2 + 18aδ + 4bδ − 2δ2. (5.5)
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By varying δ between 1 and 10 and looking for the integer solutions of equation (5.5), we get that the

only possibilities are Γ = L or Γ = M . This gives (1).

Now, to prove (2), we will see that the linear systems have no fixed components and so the assertion

follows from 3.1.8(1). Consider the linear system |2H − L −M | and assume by contradiction that it

has a rational curve Γ = aH + bL+ cM as fixed component, for a, b, c ∈ Z. The curve Γ is such that

and 0 < deg(Γ) = H · Γ < H · (2H − L −M) = 6 and so the only possibilities are Γ = L or Γ = M

by part (1). This implies that 2H − L−M is nef since (2H − L−M) · L = 4 = (2H − L−M) ·M .

By Proposition 3.1.8(5), 2H − L−M = αE + Γ, where E is an irreducible curve with pa(E) = 1 and

α ≥ 2; and by [SD74, (2.7.3),(2.7.4)], E ·Γ ∈ {0, 1}. Thus, 4 = (2H−L−M) ·Γ = (αE+Γ) ·Γ ≤ α−2.

It follows that α = 6 and so 4 = (2H − L − M)2 = (6E + Γ)2 ≤ 12 − 2 = 10. This is not possible.

Therefore, |2H − L − M | has no fixed component. Similarly, we conclude that the linear systems

|2H + L+M | and |3H − L−M | has no fixed part.

Note that KC1 = C1|C1 = (2H +L+M)|C1 = 2H|C1 by adjunction formula and the fact that C1 ·L =

0 = C1 ·M . This is (3). To see that (4) holds we observe the following. From the structural sequence

of C1 ⊂ P3 we get that h0(P3, IC1(3)) ≥ h0(P3,OP3(3)) − h0(C1,OC1(3H)) = 10 − h0(C1,OC1(3H)).

Using the Riemann-Roch theorem on C1, we conclude that h0(P3, IC1(3)) ≥ 1, i.e., C1 is contained in

a cubic surface T , which is unique by degree reasons.

From now on we consider the curves C1 ∈ |2H +L+M | and C ′
1 ∈ |3H −L−M | of type (11, 10), and

the curve C2 ∈ |2H −L−M | of type (3, 6) to be smooth. The curves C1 and C2 belong to the Hilbert

scheme H11,10 that parametrized smooth curves C ⊂ P3 of genus 11 and degree 10. These curves are

not general in H11,10. Indeed, the set of curves C ∈ H11,10 that are contained in a cubic surface defines

a closed loci in H11,10. The same is true for curves C ∈ H11,10 such that KC = OC(2).

Proposition 5.3.3. Let C,C ′ ∈ H11,10 be smooth curves in P3 of type (11, 10). Assume that C is

general and that KC′ = OC′(2).

1. A very general quartic surface containing C has Picard rank r(S) = 2, discriminant r(S) = 20

and the intersection matrix is given by (
4 10

10 20

)
.

2. A very general quartic surface containing C ′ has Picard rank r(S) = 3 and the intersection

matrix is given by 
4 1 1

1 −2 0

1 0 −2

 .
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Proof. We start by proving (1) Let S ⊂ P3 be a smooth quartic surface containing C. Consider

the sublattice L = ⟨H,C⟩ of Pic(S), where H denotes a hyperplane section. It is possible to show

that there exist no elements x ̸= 0 in the discriminant group A(L) ∼= Z2 × Z10 such that qL(x) = 0,

where qL is the quadratic form induced by the bilinear form on L. From [Nik80, Proposition 1.4.1],

L is a primitive lattice of Pic(S). Thus, L is a primitive lattice of the K3 lattice ΛK3 with signature

(1, 1). Therefore, a very general element in the moduli space of L-polarized K3 surfaces correspond to

a smooth quartic surface with Pic(S) ∼= L.

Now, consider S ⊂ P3 a smooth quartic surface containing C ′ and denote by H a hyperplane section.

Note that h0(S, 2H) = 10, h0(S, 2H − C ′) = 0 and h0(C ′, 2H − C ′) = 1 since 2H is very ample,

(2H − C ′) · H = −2 < 0, and KC′ = OC′ . From the structural sequence of C ′ ⊂ S, we have

11 = h0(C ′, 2H) ≤ h0(S, 2H)+h1(S, 2H−C ′) = 10+h1(S, 2H−C ′). Then h1(S, 2H−C ′) = 1. Now,

from Riemman-Roch we get that h0(S,C ′ − 2H) = 1. Furthermore, (C ′ − 2H)2 = −4 which implies

that the section of C ′−2H is the union of at least two rational curves, but since (C ′−2H) ·H = 2, we

get that it is precisely the union of two skew lines L,M . Set L = ⟨H,L,M⟩ ⊂ Pic(S). Again, looking

at the discriminant we conclude that L is a primitive sublattice of Pic(S) and so a very general surface

in the moduli of L-polarized K3 surface is a smooth quartic surface with Pic(S) ∼= L.

We now investigate the blow-ups of P3 along the curves C1 and C2 on S.

Proposition 5.3.4. Let S ⊂ P3 be a smooth quartic surface with r(S) = 3 and intersection matrix

given by (5.3). Let C1 be a smooth curve in the linear system |2H+L+M | and denote by p1 : X1 ! P3

the blowup X1 of P3 along C1. Then X1 is weak Fano and p1 : X1 ! P3 initiates a Sarkisov link χ,

such that χ ∈ Bir(P3;S) and χ|S = τ . Here τ is the third generator of Aut(S) in (5.4).

Proof. Consider the class 4H − C1 = 2H − L −M . By the proof of Proposition 5.3.2(2), 4H − C1

is nef, and so it is big since (4H − C1)
2 = 4. Now, we prove that 4H − C1 is ample. If not, there

is a rational curve Γ = aH + bL + cM that satisfies conditions Γ · (4H − C1) = 6a + 4b + 4c = 0

and Γ2 = 4a2 − 2b2 − 2c2 + 2ab + 2ac. These two last condition lead to the quadratic equation

−4 = −7a2 − 8b2 − 12ab, which has no integer solutions. Therefore, the variety X1 is weak Fano and

p1 : X1 ! P3 initiates a Sarkisov link by Proposition 4.3.9.

Now we describe the Sarkisov links to conclude the second part of the statement. Note that there

exists a smooth quadric Q ⊂ P3 such that Q ∩ S = C ′
1 ∪ L ∪ M . Consider the class of C ′

1 =

af1 + bf2 in Pic(Q) ∼= Pic(P1 × P1), where f1 and f2 are the respective fibers with respect to the

two projections π1, π2 : P1 × P1 ! P1. Recall that the intersection product on P1 × P1 is defined by

D ·D′ = (cf1 + df2) · (c′f1 + d′f2) = cd′ + c′d, a hyperplane section of Q ⊂ P3 has class f1 + f2 and

the canonical divisor KP1×P1 = −2f1 − 2f2. Hence, 6 = deg(C ′
1) = a + b and 4 = 2g(C ′

1) − 2 =
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C ′
1 · (C ′

1 + KP1×P1) = 2ab − 2a − 2b. Then, (a, b) = (2, 4) or (a, b) = (4, 2). Assume without loss of

generality that C ′
1 = 2f1 + 4f2. The restriction π2 to C ′

1 gives a surjective map C ′
1 ! P1 of degree

2. Therefore, the curve C ′
1 is a hyperelliptic. Let S̃ and C̃ ′

1 be the strict transform of S and C ′
1

under the blowup p1 : X1 −! P3, respectively. Denote by E the exceptional divisor of p1, and by

H a hyperplane in P3, its pullback to X1 and its restriction S. Thus −KX1 = 4H − E, S ∼= S̃ and

(−KX1)|C̃′
1
= (4H − E)|C̃′

1
= (4H − C1)|C′

1
= C ′

1|C′
1
= KC′

1
. Furthermore, since the linear system

|4H − E| is 5-dimensional, for a generic point q ∈ X, we can consider a pencil of |4H − E| passing

through q, generated by elements D1, D2 ∈ |4H − E|. The hypersurfaces D1 and D2 correspond to

smooth quartic surfaces S1 and S2 on P3 containing the curve C1. We assume these surfaces are very

general surfaces containing the curve C1. Thus, Pic(S1) ∼= Pic(S) and S1 ∩ S2 = C1 ∪ C ′
12, where C ′

12

is a smooth hyperelliptic curve of type (3, 6), KC′
12

= (−KX1)|C̃′
12

and q ∈ C ′
12. It follows that X is

covered by such smooth hyperelliptic curves C of type (3, 6) such that (−KX1)|C = KC . Since the

map given by |KC | has degree 2 on every hypereliptic C, we conclude that the anticanonical morphism

φ|−KX1
| also has degree 2. The anticanonical map φ|−KX1

| : X1 ! Y factors through a morphism

X1 ! W to anticanonical model W of X1 and the map W ! Y is also of degree 2. Thus, we can

describe the Sarkisov link initiated by the blowup p1 : X1 ! P3 by the following diagram

X1

p1

��

η
''

ϕ // X

η
ww

p1

��

W

α

��

2:1 ��
Y

P3
χ

// P3 .

More precisely, χ = (η ◦ p−1
1 )−1 ◦ α ◦ (η ◦ p−1

1 ). This description guarantees that the smooth quartic

surface S is stabilized by χ. It indeed stabilizes any quartic surface containing the curve C1. Note

that ϕ∗ is an isometry of order two of Pic(X1) = ⟨H,E⟩ which stabilizes −KX1 = 4H − E. Fix now

the basis H,−KX1 of Pic(X1). In this basis, the isometry ϕ∗ is given by(
a 0

b 1

)
.

Since (ϕ∗)2 = id, a2 = 1 and ab + a = 0, we have a = −1. From 2.2.6, H · (−KX1)
2 = 6 and so

5 = ϕ∗H · (−KX1)
2 = (−H − bKX1) · (−KX1)

2 = −6+ b(−KX1)
3 = −6+ 4b. It follows that b = 3 and

ϕ∗H = −H + 3(−KX1).

On the other hand, the restriction σ = χ|S ∈ Aut(S) is an automorphism of order 2. Note that since

ϕ∗(−KX1) = −KX1 and ϕ∗H = −H + 3(−KX1), it follows that σ∗C ′
1 = C ′

1 and σ∗H = −H + 3C ′
1 =

−H+3(2H−L−M) = 5H−3L−3M . Now, observe that C ′
1 = (H−L)+(H−M). We claim that both
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H−L and H−M are preserved by σ∗. Indeed, assume σ∗(H−L) = aH+ bL+ cM and σ∗(H−M) =

a′H + b′L+ c′M . Since 2H − L−M = ϕ∗(2HL−M) = ϕ∗(aH + bL+ cM) + ϕ∗(a′H + b′L+ c′M),

we get that a+ a′ = 2, b+ b′ = −1 and c+ c′ = −1. Moreover, from the system of equations

0 = (H − L)2 = σ∗(H − L) = 4a2 − 2b2 − 2c2 + 2ab+ 2ac

3 H · (H − L) = (5H − 3L− 3M) · (aH + bL+ cH) = 14a+ 11b+ 11c

2 = a+ a′

−1 = b+ b′

−1 = c+ c′

,

we get that a = 1 = a′, b′ = c = 0 and b = c′ = −1. Therefore ϕ∗L = ϕ ∗ (H − (H −L)) = 5H − 3L−
3M−H+L = 4H−2L−3M and ϕ∗M = ϕ∗(H−(H−M)) = 5H−3L−3M−H+M = 4H−3L−2M .

This implies then that the automorphism σ coincides with the automorphism τ in (5.4).

We could expect that the blowup p2 : X2 ! P3 of P3 along the curve C2 of type (11, 10) initiates a

Sarkisov link which induces also an automorphism of S. However, this is not the situation.

Proposition 5.3.5. Let S ⊂ P3 be a smooth quartic surface with r(S) = 3 and intersection matrix

given by (5.3). Let C2 be a smooth curve in the linear system |3H−L−M | and denote by p2 : X2 ! P3

the blowup X2 of P3 along C2. Then X2 is not weak Fano and p2 : X2 ! P3 is not a rank 2 fibration.

Proof. The fact that X2 is not weak Fano follows from the fact that the class 4H −C2 = H +L+M

is not nef: (4H −C2) ·L = −1 = (4H −C2) ·M , and by Proposition 4.3.8. To see that X2 ! Spec(C)
is not a rank 2 fibration, we will find infinitely many curves on X2 intersecting trivially −KX2 and so

the assertion follows from [Zik23b, Proposition 3.15].

Recall that C2 is contained in a unique smooth cubic surface T ⊂ P3. After describing T as the blowup

of six general points in P2, the class of C2 on the cubic T is 10l − 4e1 − 4e2 − 4e3 − 3e4 − 3e5 − 2e6,

where l is the pullback of a line in P2 and ei are the exceptional divisors associated to each point.

Note that the line l′ corresponding to the pullback of a line passing through the first two points is

a 2-secant line to C2, i.e., C · l′ = 2. Consider now the pencil of planes P ⊂ P3 containing the line

l′. For each such plane P , it follows that P ∩ T = l′ ∪ QP , where QP is a conic curve. Moreover,

10 = P ·C2 = l′ ·C2+QP ·C2 = 2+QP ·C2 and so QP ·C2 = 8. Denoting E by the exceptional divisor of

p2 and Q̃P the strict transform of QP under p2, we have that (−KX2) · Q̃P = 4H · Q̃P −E · Q̃P = 0.

We can continue by exploring the Sarkisov links initiated by the blowup of curves C ⊂ P3 of degree

d < 16, in particular, exploring the blowup of curves C of type (g, d) in (†), to construct the birational

maps of P3 that realize ιL and ιM in (5.4). We leave it for future research. However, since the

automorphisms ιL and ιM of S are described from the linear projections of P3 from the lines L and M ,
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respectively, we expect that the desired Cremona transformations contain the Sarkisov link initiated

by the blowup along the lines L and M , as the first link in a Sarkisov decomposition.
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Chapter 6

Open problems

In this chapter, we mention new research directions that emerged from this thesis.

6.1 Gizatullin’s problem for higher Picard rank

Investigating Gizatullin’s problem for smooth quartic surfaces S ⊂ P3 with Picard rank ρ(S) ≥ 3 is the

natural next step to continue with our work. For quartic surfaces S ⊂ P3 with ρ(S) = 2, when Aut(S)

comes from Bir(P3), we express the generators of Aut(S) as Cremona transformations obtained from

Sarkisov links and their compositions in Section 5.2. We recall that these Sarkisov links are initiated

by the blowup of suitable curves C on S, appearing in (†). In particular, the curves we used are general

in the Hilbert scheme Hg,d of smooth irreducible curves in P3 with genus g and degree d. Conversely,

for a general member [C] ∈ Hg,d, the general smooth quartic surface containing C has Picard rank two.

When ρ(S) = 2 and r(S) = 20, one of the curves we used has genus 10 and degree 11. In Section 5.3,

we observe that by specializing such a curve of genus 11 and degree 10, we recover Oguiso’s example

and realize an automorphism of S as the Sarkisov link initiated by the blowup of a such curve. This

gives us an “easier” description of the Cremona transformation. Thus, one possible way to explore

Gizatullin’s problem for higher Picard rank is by deformations of the quartic surfaces with Picard rank

two we had studied. Moreover, we are interested in how the automorphism group of the deformation

surface is related with the automorphism group of the general one.

6.2 Gizatullin’s problem for other K3 surfaces

Just as in the case of quartic surfaces in P3, it is natural to ask whether the automorphisms of any

projective K3 surface are induced by birational maps of an ambient space in which it is embedded.
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This question is the focus of an ongoing project in collaboration with Michela Artebani and Alice

Garbagnati. We are particularly studying the cases where S is a smooth complete intersection of a

quadric and a cubic hypersurfaces in P4, or a smooth complete intersection of three quadrics in P5.

This leads us to consider two generalizations of Gizatullin’s problem.

On the one hand, we investigate whether the automorphisms of S arise from birational maps of a Fano

threefold with Picard rank one, such as a quadric or cubic hypersurface in P4, or the intersection of

two quadric hypersurfaces in P5. When S has Picard rank two, we can apply all the tools developed

in sections 4.3, 5.1 and 5.2, particularly leveraging results from [CM13, BL15, Zik23b]. On the other

hand, we may also ask which automorphisms of S come from Cremona transformations of the ambient

space P4 or P5, respectively. Notably, the fact that all regular maps of both smooth quadric and

cubic hypersurfaces arise from regular maps of P4 suggests to address this question by first solving

the previous one. Subsequently, we can investigate whether the birational maps of the Fano threefolds

come from Cremona maps of the projective space.

6.3 Classification of Sarkisov links

Sarkisov links starting from a Fano threefold Y with Picard rank one are not yet completely classified.

The condition on the Picard rank of Y ensures that such links must begin with a divisorial extraction

X −! Y , where X has Picard rank two. Since the Sarkisov link is determined by the two extremal

contractions on X, a natural first step in this classification is to study X and the extremal contractions.

This approach is explored in [JPR05, JPR11, CM13, BL12, BL15], where divisorial contractions X −!

Y where X is a weak Fano threefold are classified. In particular, [CM13, BL12] and [BL15] provide a

classification of curves in Y such that their blowup X is a weak Fano variety and gives rise to Sarkisov

links.

A first result for the cases when X is not weak Fano appears in [Zik23b], which classifies smooth curves

in P3 lying in a smooth cubic surface whose blowup generates Sarkisov links. Continuing along these

lines, one might ask about Sarkisov links induced by the blowup of curves in P3 that are contained in

smooth quartics where the resulting blowup is not weak Fano. In Proposition 4.3.11, we prove that if

the quartic has Picard rank two, such Sarkisov links do not exist, as the lattice structure of the Picard

group of the quartic restricts the possible curves. In the ongoing project mentioned in Section 6.2,

we find similar conclusions. The aim of this project is to extend this approach by considering smooth

quartic surfaces, and more generally, K3 surfaces with higher Picard ranks, to construct and classify

Sarkisov links. Since the existence of antiflips are related with the existence of rational curves on the

K3 surface with certain numerical intersection conditions, one can leverage the lattice structure of the

Picard group of the surface to exclude some cases.
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6.4 Inertia and Decomposition groups

One way to construct interesting subgroups of the Cremona group Bir(Pn) is by exploiting these

concepts. Given a subvariety X ⊂ Pn, the decomposition group Dec(X) is the subgroup of Bir(Pn)

of Cremona transformations stabilizing X. Therefore, every element in Dec(X) induces a birational

self-map of X. The elements of Dec(X) for which the induced birational map is trivial on X form a

subgroup denoted by In(X) and called the inertia group. They fit into an exact sequence

0 // In(X) // Dec(X)
r // Bir(X) .

When X ⊂ Pn is a hypersurface of degree n+ 1 and mild singularities, the pair (Pn, X) is a canonical

Calabi-Yau pair and we can use the volume preserving Sarkisov program to investigate Dec(X) and

In(X). Some interesting recent results have been achieved using this method in [ACM23, Duc24, dS24b]

and [dS24a]. In this framework, Gizatullin’s problem asks to identify the image of r. Thus, another

natural continuation of our work is studying the structure of the decomposition and inertia groups in

these cases. When S ⊂ P3 is a smooth quartic surface with ρ(S) = 2 and discriminant r(S) > 57 or

r(S) = 52, Dec(S) is trivial and so In(S) is. In the remaining cases for which Aut(S) ̸= {1}, Dec(S)

is not trivial since we realize automorphisms of S as Cremona transformations of P3. As mentioned

before, each such Cremona transformation of P3 is initiated by blowing up a suitable curve on S. The

blowup of linearly equivalent smooth curves on S give different birational maps of P3 inducing the

same automorphism of S, implying that In(S) is not trivial.
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quotients. In Arithmetic and geometry around hypergeometric functions. Lecture notes

of a CIMPA summer school held at Galatasaray University, Istanbul, Turkey, June 13–

25, 2005, pages 43–100. Basel: Birkhäuser, 2007.

[Dol96] I. V. Dolgachev. Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci., New

York, 81(3):2599–2630, 1996.

[dS24a] Eduardo Alves da Silva. Birational geometry of Calabi-Yau pairs (P3, D) of coregularity

2. Preprint, arXiv:2402.13970, 2024.

[dS24b] Eduardo Alves da Silva. On the decomposition group of a nonsingular plane cubic by a

log Calabi-Yau geometrical perspective. Preprint, arXiv:2402.13968, 2024.

[Duc24] Tom Ducat. Quartic surfaces up to volume preserving equivalence. Sel. Math., New

Ser., 30(1):27, 2024. Id/No 2.

[EH16] D. Eisenbud and J. Harris. 3264 and All That: A Second Course in Algebraic Geometry.

Cambridge University Press, 2016.

[GLP10] Federica Galluzi, Giuseppe Lombardo, and Chris Peters. Automorphs of indefinite binary

quadratic forms and K3-surfaces with Picard number 2. Rend. Sem. Mat. Univ. Politec.

Torino, 68(1):57–77, 2010.

94



[GS13] Alice Garbagnati and Alessandra Sarti. On symplectic and non-symplectic automor-

phisms of K3 surfaces. Rev. Mat. Iberoam., 29(1):135–162, 2013.

[Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52.

Springer-Verlag, New York-Heidelberg, 1977.

[HM13] Christopher D. Hacon and James McKernan. The Sarkisov program. J. Algebraic Geom.,

22(2):389–405, 2013.

[Huy16] Daniel Huybrechts. Lectures on K3 surfaces, volume 158 of Camb. Stud. Adv. Math.

Cambridge: Cambridge University Press, 2016.

[IP99] V. A. Iskovskikh and Yu. G. Prokhorov. Fano varieties. In Algebraic geometry V: Fano

varieties. Transl. from the Russian by Yu. G. Prokhorov and S. Tregub, pages 1–245.

Berlin: Springer, 1999.

[JPR05] Priska Jahnke, Thomas Peternell, and Ivo Radloff. Threefolds with big and nef anti-

canonical bundles. I. Math. Ann., 333(3):569–631, 2005.

[JPR11] Priska Jahnke, Thomas Peternell, and Ivo Radloff. Threefolds with big and nef anti-

canonical bundles II. Cent. Eur. J. Math., 9(3):449–488, 2011.

[Kaw01] Masayuki Kawakita. Divisorial contractions in dimension three which contract divisors

to smooth points. Invent. Math., 145(1):105–119, 2001.

[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties. Cambridge

University Press, 1998.

[KMM87] Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki. Introduction to the mini-

mal model problem. In Algebraic geometry, Sendai, 1985, volume 10, pages 283–361.

Mathematical Society of Japan, 1987.

[Kod64] K. Kodaira. On the structure of compact complex analytic surfaces, i. American Journal

of Mathematics, 86(4):751–798, 1964.

[Kov94] Sándor J. Kovács. The cone of curves of a K3 surface. Math. Ann., 300(4):681–691,

1994.

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Classical setting: line bundles and

linear series, volume 48 of Ergeb. Math. Grenzgeb., 3. Folge. Berlin: Springer, 2004.

[Lee23] Kwangwoo Lee. Automorphisms of K3 surfaces with Picard number two. Bull. Korean

Math. Soc., 60(6):1427–1437, 2023.

95



[LZ20] Stéphane Lamy and Susanna Zimmermann. Signature morphisms from the Cremona

group over a non-closed field. J. Eur. Math. Soc. (JEMS), 22(10):3133–3173, 2020.

[Mat02] Kenji Matsuki. Introduction to the Mori program. Universitext. Springer-Verlag, New

York, 2002.

[MM64] Hideyuki Matsumura and Paul Monsky. On the automorphisms of hypersurfaces. J.

Math. Kyoto Univ., 3:347–361, 1963/64.

[MO98] Natsumi Machida and Keiji Oguiso. On K3 surfaces admitting finite non-symplectic

groups actions. J. Math. Sci., Tokyo, 5(2):273–297, 1998.

[Mor79] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. Math. (2),

110:593–606, 1979.

[Mor84a] Shigefumi Mori. On degrees and genera of curves on smooth quartic surfaces in P3.

Nagoya Math. J., 96:127–132, 1984.

[Mor84b] David Morrison. On K3 surfaces with large Picard number. Invent Math, 75:105–121,

1984.

[Mor88] Shigefumi Mori. Flip theorem and the existence of minimal models for 3-folds. J. Am.

Math. Soc., 1(1):117–253, 1988.

[Muk88] Shigeru Mukai. Finite groups of automorphisms of K3 surfaces and the Mathieu group.

Invent. Math., 94(1):183–221, 1988.

[Nik79] Vyacheslav Nikulin. Finite automorphisms groups of Kähler K3 surfaces. Trudy Moskov.

Mat. Obshch, 38:75–137, 1979.

[Nik80] Vyacheslav Nikulin. Integral symmetric bilinear forms and some of their applications.

Math. USSR Izv., 14:103–167, 1980.

[Nik83] Vyacheslav Nikulin. Factor groups of groups of automorphisms of hyperbolic forms with

respect to subgroups generated by 2-reflections. J. Soviet Math., 22:1401–1475, 1983.

[Ogu12] Keiji Oguiso. Smooth quartic K3 surfaces and Cremona transformations, II. arXiv

e-prints, June 2012.

[Ogu13] Keiji Oguiso. Quartic K3 surfaces and Cremona transformations. In Arithmetic and

geometry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst. Commun.,

pages 455–460. Springer, New York, 2013.

[OZ98] Keiji Oguiso and De-Qi Zhang. K3 surfaces with order five automorphisms. J. Math.

Kyoto Univ., 38(3):419–438, 1998.

96



[OZ11] Keiji Oguiso and De-Qi Zhang. K3 surfaces with order 11 automorphisms. Pure Appl.

Math. Q., 7(4):1657–1673, 2011.

[PQ25] Daniela Paiva and Ana Quedo. Automorphisms of quartic surfaces and cremona trans-

formations. Journal of Pure and Applied Algebra, 229(1):107850, 2025.

[SD74] Bernard Saint-Donat. Projective models of K-3 surfaces. Am. J. Math., 96:602–639,

1974.

[Sho86] Vyacheslav Vladimirovich Shokurov. The nonvanishing theorem. Mathematics of the

USSR-Izvestiya, 26(3):591, 1986.

[Tak98] Nobuyoshi Takahashi. An application of Noether-Fano inequalities. Math. Z, 228:1–9,

1998.

[Tak11] Shingo Taki. Classification of non-symplectic automorphisms of order 3 on K3 surfaces.

Math. Nachr., 284(1):124–135, 2011.

[Tzi03] Nikolaos Tziolas. Terminal 3-fold divisorial contractions of a surface to a curve. I. Com-

pos. Math., 139(3):239–261, 2003.

[Zik23a] Sokratis Zikas. Rigid birational involutions of P3 and cubic threefolds. J. Éc. Polytech.,

Math., 10:233–252, 2023.

[Zik23b] Sokratis Zikas. Sarkisov links with centre space curves on smooth cubic surfaces. Publ.

Mat., Barc., 67(2):481–513, 2023.

97


	Introduction
	On a problem of Gizatullin

	Preliminaries
	Background on lattices
	Lattices of rank two
	p-elementary lattices

	Background on algebraic geometry
	Divisors, 1-cycles and intersection numbers
	Cone of curves and divisors
	Minimal Model Program


	K3 surfaces
	Introduction
	Hodge and lattice structures
	Automorphisms
	Lattice polarized K3 surfaces
	K3 surfaces with Picard rank two
	Automorphisms


	Sarkisov Program
	Introduction
	Calabi-Yau pairs and volume preserving birational maps
	Classification of Sarkisov links from P3Spec(C)
	Sarkisov links centered on curves on quartic surfaces


	On Gizatullin's problem for low Picard rank
	The high discriminant case
	A counter-example for Oguiso's question

	The low discriminant case
	Insights for higher Picard rank: An example

	Open problems
	Gizatullin's problem for higher Picard rank
	Gizatullin's problem for other K3 surfaces
	Classification of Sarkisov links
	Inertia and Decomposition groups

	Bibliography

