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1 Introduction

The purpose of this project is to understand the group of the birational au-
tomorphisms of n-dimensional projective space by focusing on the study of



its generators. This group is called the n-Cremona group and is denoted by
Bir(P™). An element ¢ € Bir(P™) is an invertible rational self map of P", i.e.,

o : P ——— P p=(Fy:..: Fp),

where Fy, ..., F;, are homogeneous polynomials of degree d without common
factor. The degree of ¢ is the integer d and it is denoted by deg(y). Every
automorphism of P” is a birational map, i.e., Aut(P") < Bir(P") is a sub-
group. Every rational map ¢ : P! ——— P! can be extended to P!. Thus
Bir(P) = Aut(P') = PGLy(C) (see example . The simplest example of
a birational automorphism of P? that is not an isomorphism is the so called
standard quadratic transformation of the plane:

7:P? —— > P? (x:y:2)— (yz:22:2y),

Indeed, note that 72(z : y : 2) = (2%yz : 2y*2 : 2y2?) = (v : y : 2) and therefore
T is invertible as rational map (see example .

The group of birational automorphisms of an algebraic variety is a birational
invariant and therefore an important object of study in birational geometry.
Furthermore, more recently it has had applications in discrete and continuous
complex dynamics.

The Cremona group was introduced by the Italian mathematician Luigi Cre-
mona in 1863-1865. At the end of the 19th century, Max Noether stated that
every birational automorphism of P? is a composition of projective linear trans-
formations and the standard quadratic transformation. Therefore,

Bir(P?) = (Aut(P?), 7). (1)

Noether’s idea to show this claim was to consider a birational automorphism of
P2, then take a quadratic transformation ¢ satisfying particular properties such
that deg(¢poq) < deg(¢). Thus, by induction, we obtain a map of degree 1, this
is a projective linear transformation. However, such quadratic transformation
may not exist. The first complete proof is due to Guido Castelnuovo [4]. The
strategy in Castelnuovo’s proof was based on two decomposition steps. First,
he showed that any birational automorphism of P? can be factored as a com-
position of Jonquiére maps, i.e., maps which preserve a pencil of lines. Second,
he proved that such maps decompose into quadratic maps. As a consequence
of Noether-Castelnuovo Theorem and its proof, the Jonquiere maps and linear
transformations generate the 2-Cremona group.

In higher dimensions the birational geometry of projective varieties becomes
more complicated. We do not have an analogue of the Noether-Castelnuovo
Theorem. Hilda Hudson [8] and Ivan Pan [I1] proved that any set of group
generators of the n-Cremona group, n > 3, contains uncountably many trans-
formations of unbounded degree. More recently, J. Blanc, S. Lamy and S.



Zimmermann [3] showed that Bir(P™), n = 3, is not generated by Aut(P™), the
Jonquiere maps and any subset that has a smaller cardinality than that of C.
In fact, their result is:

Theorem 1. Fiz n > 3. Let S < Bir(P") be a subset of elements in the n-
Cremona group that has cardinality smaller than that of C, and let G < Bir(P™)
be the subgroup generated by Aut(P™), all Jonquiére maps and S. Then, there
exists a surjective group homomorphism

Bir(P") — /27,

such that G is contained is its kernel. In particular, G is a proper subgroup of
Bir(P").

Theorem (1| is the motivation of our work. We are interested in studying its
proof and some tools used in [3]. To show this last result, Blanc, Lamy and
Zimmermann used a powerful tool coming from the MMP. This is called the
Sarkisov Program, which provides a decomposition of any birational automor-
phism of P™ into elementary links, called Sarkisov links.

All the results mentioned so far, as well as the results we will present in this
document, are valid for any algebraically closed field of characteristic zero. For
simplicity, throughout this project we work over the field C of complex numbers.

2 Preliminaries

In this short section we want to establish the notation and state some basic
results that will allow us to understand the remaining sections. We skip most
of the proofs and focus on examples that are important in the development of
this work. We refer to [7] and [I2] for proofs and more details.

2.1 First definitions and properties

Let us recall some classical notions of algebraic geometry that we will need.

The n-dimensional complex projective space CP"™ can be defined as a com-
pactification of C" that adds a new point for every direction in C", i.e., CP" =
C™ U CP""!. Or equivalently

CP" = P = cn+1\{6}/(x0, @) ~ (A2, .o, Azn), A € C\{O}.

We denote by (zg : ... : 2,,) € P" the equivalence class of (g, ...,x,) € C**1.
We say that xq, ..., x,, are the homogeneous coordinates of P". An algebraic set
X < P™ is the locus of points satisfying a set of polynomial equations, i.e.,

X =Z(F1,... Fx) :i={(z1: ... : Tp) € P"|Fi (21, ..cpn) = -+ = F(z1, ..., T) = 0},



where each F; € C[xy, ..., 2, ] is a homogeneous polynomial. If F' € Clxo, ..., Zn]
is a homogeneous polynomial, the algebraic set Z(F) is said to be a hypersurface
defined by F. If F is of degree one, Z(F) is called a hyperplane. We say X < P™
is srreducible if X is not the union of proper algebraic subsets of X, i.e., if any
writing X = X7 u Xo, where X1, X, are two algebraic sets implies that X = X3
or X = Xs. The Zariski topology on P™ is the topology whose closed subsets
are the algebraic sets of P". We say that X is a projective algebraic variety if
X is an irreducible algebraic set P™.

We define the ring of regular functions O(X) as the set of functions f :
X — C such that for any point z € X there is an open neighborhood U < X
of z, and two homogeneous polynomials F, G € C[xg, ..., x,] of the same degree
with G not vanishing at any point of U, such that f = F/Q on U. We define
the field of rational functions C(X) as a set of equivalence classes of pairs (U, f)
where U < X is an open set and f € O(U). Where two pairs (U, f) and (V, g)
are equivalent if f = g on U n V. We have that O(P") = C(P) = C, while
C(P") = C(y1, - Yn)-

Let X € P™ and Y < P™ be projective varieties. A morphism ¢ : X — Y
between projective varieties is a map such that for any point z € X, there
is an open subset U < X which contains x, and homogeneous polynomials
Fy, ..., Fy, € Clxo, ..., x,] of the same degree such that Vy € U, F;(y) # 0 for
some i € {0,..,m} and ¢(y) = (Fo(y) : ... : Fn(y)). When X and Y are
projective spaces, any morphism is globally polynomial.

Proposition 1. Let ¢ : P* — P™ be a morphism of projective varieties. Then,
there exist homogeneous polynomials Fy, ..., Fy, € Clxo, ..., x,] of the same degree
such that Yz € P, p(z) = (Fo(z) : ... : Fip(x)).

We say that ¢ : X — Y is an isomorphism if there exists a morphism
¥ :Y — X such that ¢ op = Idx and po = Idy.

Example 1 (Automorphisms of P"). An automorphism ¢ : P* — P" is given
by ¢(z) = (Fo(x) : ... : Fyp(x)) where Fy,...,F,, € Clxo,...,x,] are linearly
independent homogeneous polynomials of degree 1. We see that F; = a;ozg +
wee F QinTp, SO we obtain an isomorphism between Aut(P™) and PGL,1(C),

where for each ¢ corresponds the equivalence class (ai;),; j<n
<iyj<

Remark 1 (Pull-back of rational functions). If ¢ : X — Y is a morphism
between projective surfaces and f € C(Y)* is a rational function on Y, the
pull-back of f by ¢ defined by ¢* f := f o ¢ is a rational function on X.

Now, let us define a more general type of map between projective varieties
which is important for their classification.

Definition 1 (Rationals Maps). Let X < P™ and Y < P™ be projective va-
rieties. A rational map, denoted by ¢ : X ——— Y, is a morphism from a
non-empty open subset U € X to Y which cannot be extended to any larger



open set. We say that ¢ is defined at x € X if x € U. The indeterminacy set of
© is defined by Ind(p) = X\U.

Remark 2. If U < X is an open subset and ¢ : U — Y is a morphism. Then
i can be extended in a unique way to a rational map, i.e., if o, : X ——— Y
are rational maps that coincide on a non-empty open subset then ¢ = .

When X =Y = P”, rational maps can be described in a simpler way.

Proposition 2 (Rational Maps of P"). Let ¢ : P ——— P™ be a rational map.

Then, there exist homogeneous polynomials Fy, ..., F,, € Clzg, ..., x,] of the same
degree, without common factors, such that p(xg : ... : Tp) = (Fo(Zo, ..oy Tn) : ...
Fo(xoy-yTn))-

As a consequence, Ind(yp) = Z(Fy,...,F,) is a closed subset of P™ of codi-
mension > 2. Since the polynomials that describe ¢ are of same degree, we can
define the degree of ¢ as being deg(p) = deg(F;).

In general, a rational map ¢ : X ——— Y is called birational if there exist
non-empty open subsets U < P" and V < P™ such that |y : U — V is an
isomorphism. In this case, X and Y are said to be birationally equivalent or
simply birational.

Here are two examples that play an important role in the main results of
this text.

Example 2. Every automorphism ¢ : P* — P" is a birational map, where
the open sets are U =V = P", Ind(yp) = & and deg(p) = 1.

Example 3 (Standard Quadratic Transformation). Consider the complex pro-
jective plane P? with homogeneous coordinates x,y,z. The rational map 7 :
P? ——— P2 defined by

(x:y:2)——— (yz: 2z :2y)

is called standard quadratic transformation. Fixing the points p; = (1 : 0 : 0),
p2=(0:1:0) and ps = (0:0:1), we can see that 7 is defined on the open set
P2\{p1, p2,p3}. Consider the lines L1 = Z(z), Ly = Z(y) and L3 = Z(z), we
have that 7(L;) = p;. These lines are called the exceptional lines.

If we consider the open set U := P?\Z(zyz) and (z : y : z) € U, we can see
that 7(7(x : y : 2)) = (z : y : 2), that is, 7|y : U — U is an isomorphism.
Therefore, 7 is a birational map, with 7=% = 7, Ind(r) = {p1,p2,p3} and
deg(T) = 2.

2.2 Divisors

Now, we will study the notion of divisors on projective varieties.
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Figure 1: Standard quadratic transformation.

Let X a projective algebraic variety. A prime divisor D on X is simply a
closed subvariety of X of codimension 1.

Example 4. If X is a curve, the prime divisors are exactly the points of X.
If X is a surface, the prime divisors are the irreducible curves that lie on X.
If X = P", the prime divisors corresponds to irreducible hypersurfaces, i.e.,
D = Z(F), where F € Clxy,....,x,] is an irreducible homogeneous polynomial.

A Weil divisor on X is a formal finite sum of prime divisor with integer
coefficients. These divisors form an abelian group, denoted by Div(X).

m
Div(X) = {Z a;D;l/m e N, a; € Z, D; is a prime divisor on X, for ¢ =1, ...,m} .
i=1

If D = > a;D; is a Weil divisor, we call D effective if a; > 0 for every i.
Given a rational function f € C(X)*, for every prime divisor D we associate
the integer Vy(D) as follows: V¢(D) = k > 0 if f vanishes on D at the order
k; Vi(D) = —k < 0if f has a pole of order k on D, and V¢(D) = 0 otherwise.
V¢ (D) is called multiplicity of f at D. Since V¢(D) = 0 for all but finitely many
D, we define

Div(f) = > Vi(D)D € Div(X).

D prime divisor

The divisors obtained in this way are called principal divisors. If f, g € C(X)
are rational functions, then div(fg) = div(f) + div(g). It follows that principal
divisors form a subgroup of Div(X).

Two divisors D, D’ on X are linearly equivalent is D — D’ is a principal
divisor. We represent this relation as D ~ D’. The quotient of Div(X) by the
subgroup of principal divisors is denoted by CI(X) and is called divisor class

group.



Example 5 (Divisors of P"). Any Weil divisor D on P" is given by D =
2211 a;Y;, where a; € Z and Y; is an irreducible hypersurface. We define degree
of D by degD = Y a;deg(Y;), where deg(Y;) is the degree of the irreducible
polynomial that defines Y;.

We refer [7, Proposition 6.4, Chapter II] to for the proof of the following
proposition.

Proposition 3. Let H be a hypersuperface of P*. We have the following:
i) For any f € C(P™)*, deg(div(f)) = 0.
i) If D is a divisor of degree d in P™, then D ~ dH.

11) 0 : Div(P™) — Z, defined by 0(D) = deg(D) is a group homomorphism
) ( ; y g group D
and induces a group isomorphism 6 : Cl(P") — Z.

As consequence, we have that CI(P") = Z[H].

2.2.1 Locally principal divisors

Suppose that X is a smooth projective variety and D is a divisor on X. Then,
every point x € X has a neighbourhood in which D is principal. Indeed, for
any prime divisor D and any point x € X there exists an open neighbourhood
U c X of z in which D is defined by a local equation f, where f € C(X)*. So,
if D =Y a;D; we can take an open set U with « € U in which each of the D; is
defined by f;, then we have D = div(f), where f =[] f.

Definition 2 (Pull-back of divisors). Let X and Y be smooth projective vari-
eties and ¢ : X — Y a surjective morphism. Let D € Div(Y), D = > a;D;.
We define the pull-back of D ¢* € Div(X) as

©*D = Zaﬁp*Di,

where, if D; is locally defined by f;, ¢*D; is locally defined by ¢* f; (see remark

1.

3 Surfaces

In this section, we want to focus on studying the plane Cremona group, Bir(P?).
We will study the celebrated Noehter-Castelnuovo theorem from a modern point
of view. More precisely, using the Sarkisov program: a fundamental tool in the
current study of Birational Geometry. One of the most important features of
this tool is that it can be generalized to higher dimensions. In order to explain
the Sarkisov program, we need to introduce some fundamental concepts from
intersection theory and birational geometry of projective surfaces.

Throughout this section, we refer to X as a surface if it is a smooth projective
surface over C. Recall from example[d]that irreducible curves on X are the prime
divisors of X.



3.1 Intersection of two curves on a surface

Theorem 2 (Intersection form on surfaces). Let X be a surface. There exists
a unique symmetric bilinear form

-: Div(X) x Div(X) — Z
(¢,D) — C-D

such that:

1) If C and D are smooth curves on X meeting transversely, then, C - D =
#(C n D), the number of points of C' n D.

2) IfC ~C', then C-D =C"-D for any D € Div(X). This means that the
intersection number C - D depends only on the linear equivalence classes
of C and D.

For a proof we refer to [7, Theorem 1.1, Chapter V]. By @), - induces an
intersection form CI(X) x CI(X) — Z.

Example 6. If X = P2, the intersection form is given as follows: If C, D are
curves of degree n and m respectively, then C' - D = mn. Indeed, let L be a line
in P2, L2 = L - L = 1. This follows from the fact that two different lines meet
transversally at a single point and are linearly equivalent. Since C' ~ nL and
D ~mL, then C-D =nL-mL =nmL? = nm.

3.2 Blow-up of a surface at a point

A classical example of morphism which is birational but not an isomorphism is
the blow-up. The basic idea of blow-ups in algebraic geometry is to remove a
point from an algebraic variety and replace it by all the directions pointing out
of that point (see figure . The blow-up plays a fundamental role in the theory
of resolution of singularities and in our case it is an indispensable tool.

Let p be a point in a surface X, we say that 7 : Y — X is the blow-up of
X atpif:

e Y is a smooth projective surface,

o Thyvr-1(p) : Y\m 1 (p) — X\{p} is an isomorphism,

o T i(p)=P!

We call E := 7~1(p) the exceptional divisor or exceptional curve of the blow-up.
The blow-up of a surface at a point is well defined. In fact, we have the following
universal property:

Proposition 4 (Universal property of the blow-up). Let 7 : ¥ — X and
7 Y — X be blow-ups of X at p € X. There is a unique isomorphism
0:Y — Y’ such that 7’p = 7.



We refer to [7, Proposition 7.14, Chapter II] for the proof. We denote the
blow-up of X at p by Bl,(X). Given an irreducible curve C' passing through p,
we define C := 7=1(C\{p}) € Bl,(X). C is called the strict transform of C.

Let m : Bl,(X) — X be the blow-up of X at p € X. The birational
morphism 7 induces a group homomorphism

™ Cl(X) — Cl(Bly(X)), C — 7*(0),
(see definition [2)).

Now, suppose that X is birational to P? (see Definition @7 which will be the
case of all the surfaces that we will treat. If C' = X is a curve and p is a point
of z, we can find an affine open neighbourhood (local chart) U of p in X with
U < C2%. Also, we can assume that p = (0,0) and that C is described by the

local equation f = > | F;(z,y) = 0 in this affine neighborhood, where Fs are
homogeneous polynomials of degree 3.

Definition 3 (Multiplicity of a curve at a point). Let C < X be a curve on X
and let f be a local equation of C' at the point p as above. The multiplicity of
C at p, mp(C), is the lowest ¢ such that F; is not equal to 0.

We have the following properties:
i) m,(C) = 0;
ii) m,(C) =0 if and only if p ¢ C;
ili) mp(C) =1 if and only if p is a smooth point of C.
Now, we have a specific description of 7*(C) for C' a curve on X:

Proposition 5. Let 7 : Bl,(X) — X be the blow-up of X atpe X. IfC is a
curve on X, then

*(C) = C +m,(C)E,
where C' is the strict transform if C and E = 7= (p) is the exceptional divisor.

The following proposition gives a characterization of the divisor class group
of the blow-up and describes the intersection form on Bl,X induced by the
intersection form on X.

Proposition 6. Let 7 : Bl,(X) — X be the blow-up of X at p e X. Denote
by E < Bl,(X) the exceptional divisor n~'(p) =~ P'. Then,

CU(BI,(X)) = 7*(CLI(X)) ®Z - [E].

Furthermore, the intersection form on Bl,(X) is induced by the intersection
form on X by the following formulas:

1) 7*(C)-7*(D) =C-D for any C,D € Cl(X),



2) ©*(C) - E =0 for any C € Cl(X),
3) EB2=E-E=—1,

For the proofs of previous propositions, we refer to [7, Proposition 3.6, Chap-
ter V] and [7, Proposition 3.2, Chapter V] respectively.

On a surface, curves with properties such as the exceptional divisor have a
particular name.

Definition 4 ((—1)-curve). A curve C on a surface X is said to be a (—1)-curve
if C? = —1 and C >~ PL.

From Proposition [6] the exceptional divisor of a blow-up of a surface at a
point is a (—1)-curve. A natural question is: Is any (—1)-curve in a surface Y
the exceptional divisor of some blow-up of a surface at a point? The answer is:

Proposition 7 (Castelnuovo’s contractibility criterion). Let C < Y be a (—1)-
curve in a surface Y. Then, there exists a surface X, a point p € X and a
morphism 7 : Y — X, such that Y\C =~ X\{p} via 7, and C is the exceptional
divisor.

For a proof we refer to [7, Theorem 5.7, Chapter V].

3.2.1 Blow-up of P? at a point

In order to understand the blow-up construction of the blow-up, we restrict our
focus to the smooth surface X = P2,

For a point p € P2, say p = (0 : 0 : 1). Consider the projection from the
point p, m, : P2 ——— P! given by (z:y : 2) —> (x : y). This is a rational map
defined in P*\{p}. Let I'r, = {((z : y : 2), (x : y))|[(x : y : 2) # p} < P? x P! be
the graph of m,. Define X := fﬁp the closure of 'y in P2 x P! (see figure .

Proposition 8. (Blow-up of P? at p). The map 7 : X —> P? is the blow-up of
P? at p, where T is the projection on the first factor.

Indeed, let ((x :y: 2),(t: s)) be homogeneous coordinates for P? x P*. We
can see that X = Z(xs —yt) = P2 x P!, then E = 7 !(p) = {p} x P = P!
is the exceptional divisor of the blow-up, and 7 restricts to an isomorphism
7T|X\E : X\E — Pz\{P}-

Let C be a curve passing through p, C = 7=1(C\{p}) is the strict transform
of C (see figure 2).

Theorem 3 (Resolution of Indeterminacy). Let ¢ : P> ——— P? be a birational
map. Then there exists a surface X and a morphism ¢ : X — P2 which is the
composition of a finite number of blow-ups such that the composition ¢ o is a
morphism.

10



Figure 2: Blow-up of P2 at the point p.

We refer to [12, Theorem 3, Chapter IV] for the proof of the previous the-
orem but let us give an idea. Given a birational map ¢ : P? ——— P2, the
indeterminacy set Ind(y) is finite. If there exists p; € Ind(p), denote by
m @ X1 — P? the blow-up at this point. The map w1 = pom is a bira-
tional map ¢y : X1 ——— P2, If Ind(p1) # &, take py a indeterminacy point
of ¢; denoted by 73 : Xo —> P? its blow-up. Again, the map ¢y = @1 o7y is
a birational map ¢y : X9 ——— P2. We iterate this process until ¢; becomes a
morphism. Such ¢ exists.

Example 7. Consider the standard quadratic transformation 7. By example
the indeterminacy points are (1:0:0),(0:1:0) and (0:0:1). Applying
the previous process we have the following figure

11
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Figure 3: Resolution of indeterminacy of 7.

3.3 Ruled surfaces

Let us now focus our attention on ruled surfaces. We will see how to construct
the Hirzebruch surfaces IF,, and their intersection forms. These surfaces play a
fundamental role in the Sarkisov program.

Definition 5 (Ruled surfaces). Let X be a surface. We say that X is a scroll
if there is a surjective morphism 7 : X — B onto a smooth curve B whose
fibers are all isomorphic to P!. A surface birationally equivalent to a scroll is
called a ruled surface.

Definition 6 (Rational surfaces). We say that a surface X is rational if there
is a birational map ¢ : X ——— P2,

Example 8. P! x P! is a rational surface. In fact, let ((¢ : s),(u : v)) and
(x : y : 2) be the homogeneous coordinates of P! x P! and P? respectively.
Consider the open sets U = (P\Z(t)) x (P'\Z(u)) = P! x P!, V = P?\Z(x) and
the isomorphism ¢ : U — V defined by ((1:s),(1:v) —> (1:s:v). Then, ¢
can be extended in a unique way to a birational map from P' x P! to P2.

Example 9 (Construction of Hirzebruch surfaces). Consider the surface P! x P
and m € N. Let us take the m lines L; = (i : 1) x P!, 1 < i < m, and
L=P! % (0:1). Let py,...,pm € P! x P! be the intersection points of the lines
Ly, ..., Ly, with L respectively. Blowing up the surface at these m points we get
a surface with Fq, ..., E,, and L17 ...7~L (—1)-curves, where F; is the exceptional

curve of blow-up of p; in P! x P1 L; is the strict transform of the line L;, and
L;n L =g forl<i#j<m. By Castelnuovo’s criterion proposmonlﬁ) we

12



can contract every curve L; toa point. The surface we get is called Hirzebruch
surface F,,. After these blow-ups and blow-downs, we have a birational map
@m P! x P! ——— T,,. This surface has the structure of a P'-bundle over P!
7 : F,, — PL Denote by f a fiber of 7 and by E = (L) =P, if m > 1, E is
the unique section such that £? = —m. In fact, for any section E’ of 7 different
from E, we have that E’> > m. By Proposition@we have

Cl(Fr) = Z[f] ® Z[E]

and the intersection form on F,, is given by:

o f2=0;
o f-E=1;
o 2 =—m.
g
BEEE
/ Y X
- L
/ i \
Ll L2 Lm f
0 0
pl.; ])2. * pm. qr 2 E
1] | ] e -
Pm
]Pﬂ X Pl IE‘m

Figure 4: Construction of Hirzebruch surfaces.
We write Fy = P! x P'. For n = 1 we can see that F; is isomorphic to the
blow-up of P? at one point.

Definition 7 (Rational ruled surfaces). Let X be a surface. We say that X is
a rational ruled surface if there is a surjective morphism 7 : X — P! such that
every fiber of 7 is isomorphic to P!.

Example 10. Hizerbruch surfaces are rational ruled surfaces. If we have that
F,, =~ F,,, then m = n.

13



The following result states that the only rational ruled surfaces are the Hizer-
bruch surfaces (up to isomorphism).

Proposition 9. Let X be a rational ruled surface. Then, there exists n = 0
such that X — TF,,.

Definition 8 (Minimal rational surfaces). P? together with Hizerbruch surfaces
can be considered the simplest surfaces in the birational class of rational surfaces
and are called minimal rational surfaces (see Section .

3.4 Birational automorphisms of the plane

Now, let us study the birational self maps of P2. Since P? is a smooth surface,

we can apply previous results. Let (z : y : z) be homogeneous coordinates for
P2,

Definition 9 (The Cremona group of the plane). The group of all birational
maps ¢ : P2 ——— P? is called the Cremona group of the plane, and is de-
noted by Bir(P?). An element ¢ : P2 ——— P? in Bir(P?) is called birational
transformation of P? or Cremona transformation and is given by

(x:y:2)— (Fo(z,y,2): Fi(z,y,2): Fa(z,y, 2)),

for some homogeneous polynomials Fy, F1, F» € C[z,y, 2] of the same degree d,
without common factors. We defined the degree of ¢ by deg($) := d and the
indeterminacy set of ¢ by Ind(¢) := Z(Fy, F1, F3).

As we saw in the previous section, Aut(PP?) is a subgroup of Bir(P?). Any
element of Aut(PP?) is a Cremona map of degree 1. Let us recall that the standard
quadratic transformation 7 : P2 ——— P? is defined by

(x:y:2)— (yz:z2:2y),

having degree 2. The following is the celebrated theorem of Max Noether and
Guido Castelnuovo:

Theorem 4 (Noether-Castelnuevo Theorem). The group Bir(P?) is generated
by Aut(P?) and the standard quadratic transformation. That is

Bir(P?) = (Aut(P?), 7).

As we mentioned in the introduction, this theorem was proved by Casteln-
uovo using particular Cremona maps.

Definition 10 (Jonquére maps). Let J : P2 ——— P2 be a birational self map
of P2. J is said to be a Jonguiére map if there exists p,q € P? such that J
takes all lines going through p to lines going through ¢ (up to a finite number
of lines).

14



Figure 5: Jonquiere map.

Example 11. The standard quadratic transformation is a Jonquiere map. In
fact, take p = ¢ = (0 : 0 : 1) and L any line in P? passing through p. If L is
different from Z(z) and Z(y), J(L) is a line going through p.

A\

Figure 6: The standard quadratic transformation is a Jonquiere map.
The strategy of proof of Nother-Castelnuovo Theorem given by castelnuovo
is based on two decomposition steps. The first step is:

Theorem 5. Every birational self map of P2 can be factored as a composition
of Jonquiére maps.

The second step is:

Theorem 6. Fvery Jonquiere map is written as composition of automorphisms
of P? and .

3.5 Sarkisov program of the plane

J. Kollar, K. Smith and A. Corti gave another proof of Theorem [d] Their proof
follows the general outline of Castelnuovo’s proof, with a modern point of view,
with a perspective from the Sarkisov program (see [10 Section 2.5]).

Definition 11 (Sarkisov program). The Sarkisov program is an algorithm for
decomposing birational maps between minimal rational surfaces into elementary
links.

Before giving a description of the program, let us define such elementary
links.

15



3.5.1 Sarkisov links

There are four types of elementary links:

I The inverse x; : P2 ——— F; of a point blow-up.

II The elementary transformation xs : Fp, ——— Fp,11, defined as the blow-

ing up of a point p € F,, , followed by the contraction of the birational
transform of the fiber through p (see figures El and .

III The blow-up xs3 : F1 — P2 of a point p € P2,

IV The morphism y4 : P' x P! — P! x P! which exchanges the two factors.

We have two cases in the link of type II:

II.1

1.2

If p € F,, belongs to the negative section E of F,,, (or m = 0), the elemen-
tary link is x2 : Fp, ——— Fpp1. In fact, let 7 : Bly(F,,) — F,, be the
blow-up of the point p and let F' be its exceptional divisor. By Proposi-
tion|6] the strict transform E of the negative section E has self-intersection
E? = m—1. Let f be the fiber through p and f its strict transform. Then
fisa (—1)-curve in Bl,(F,,) and we have that E-f = 0. From Proposition
m there exists 7’ : Blp(IE‘m) —> Y where Y is a rational ruled surface,
which contracts f to a point ¢. Thus, Bl,(F,,) = Bl,(Y) and we have
that E' := 7/(E) is a section of ¥ — P! with self-intersection —m — 1.
By proposition 9] Y = F,, for some integer n > 0. Therefore, ¥ = F,, 11
because Y has a unique curve with negative self-intersection.

Bl,(Fyn)

1
i -1 E
/ F 7

P

Figure 7: Sarkisov link of type II with p € E.

If m = 1 and p € F,,, does not belong to the negative section F of F,,, the
elementary link is xs : F,, ——— F,,_1. By a similar argument as above
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we have that E2 = —m and F - f = 1 in Bl,(F,,). So, contracting f,

E' = '(E) has self-intersection —m + 1 and we get the F,,,_; surface.

Bl,(F.n)
F
-1
-1
m E
™ | ul
!
f f!
0 0
.p
-m F e e e e e e e e m = e m+1 @ E’
X2 q
Frn ‘ Fr1

Figure 8: Sarkisov link of type (II) with p ¢ E.

Note that the elementary links are birational maps between minimal rational
surfaces.

Example 12. The map ¢,, : P! x P! ——— F,, in example [J] is factored by m
elementary links of type (II) Indeed, take the lines L1, ..., L,,, L and the
points p1, ..., pm as in By blowing up of point p; and then contracting the
strict transform of L, we get the surface F;. By abuse of notation we use the
same symbols Lo, ..., L,, and L to denote the curves in P! x P! and their images
in Fy, and likewise we use po, ..., Py to denote the intersections of Lo, ..., L.,
with L. Now, we perform the blow-up of ps and then we contract the strict
transform of Ls. Thus, we get the surface Fo. We iterate this process until we
have blown-up the point p,, and we obtain the F,, surface.

Now, we will describe the Sarkisov program.

Theorem 7 (Sarkisov program for surfaces). Fvery birational transformation
between minimal rational surfaces is a composition of Sarkisov links.

Given a map ¢ : P2 ——— P2, let us describe the algorithm for constructing
a factorization in the Sarkisov program. For this, we need to consider more
generally birational maps from P? or F,,, m > 0, to P2,

Given a map 1 : X ——— P2, where X = P2 or X = F,,, for m > 0. We
find a elementary link ¢ : X ——— X3, with X; = P2 or X; = F/ , such that
B1 =Yoo, lis “simpler” than 1. Again, we proceed to find an elementary
Sarkisov link 15 : X; ——— X; such that 8 := 3; 095" is simpler than 3,. We
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continue in this manner and then the Sarkisov program will give us the following
factorization for ¢ : P2 ——— P2

Any birational map from a minimal rational surface to P? has a corresponding
Sarkisov degree. This is a numerical invariant that measures the complexity of
the map. For example, if ¢ : P2 ——— P? is defined by homogeneous polyno-
mials Fy, F1, Fy of the same degree d, the Sarkisov degree, denoted by s.deg((p)
is d. In the previous algorithm, by “B; is simpler than ”, we mean that
s.deg(f1) < s.deg()). Therefore, such factorization into Sarkisov links is done
by induction on the Sarkisov degree.

4 Minimal Model Program

The Minimal Model Program (MMP) is a program for the construction a “sim-
plest” representatives of each birational class of projective varieties. In this
section, we will give a description of the Minimal Model Program for surfaces
and at the end we will discuss the generalizations to higher dimensions. Before
describing the MMP for surfaces, let us give some important definitions.

Let X be a smooth projective surface. From the intersection form in Theo-
rem [2| we obtain another equivalence relation in Div(X): let D, D’ € Div(X)
be divisors on X, they are said to be numerically equivalent if D -C = D’ - C
for every curve C < X and we denote this by D = D’. The quotient group of
Div(X) by the equivalence relation = is denoted by Num/(X) and the Neron-
Severi Theorem asserts that this abelian group is finitely generated. Its rank is
denoted by p(X) and is called the Picard number of X.

We define the p(X)-dimensional R-vector space N(X) := Num(X) ®z R.
The intersection form on X induces a nondegenerate symmetric bilinear form
S NYX) x NY(X) — R.

Example 13. Let 7 : Bl,(X) — X be the blow-up of X at p € X. Denote
by E < Bl,(X) the exceptional divisor 771(p) =~ P!. Similar to Theorem [6} we
have that N'(Bl,(X)) = 7*(N'(X))®R- [E] and thus p(Bl,(X)) = p(X) + 1.

In the case of surfaces, if X,Y are smooth projective surfaces, by “X is
simpler than Y we mean that p(X) < p(Y). Note that if Bi,(X) is the blow-up
of a smooth projective surface X at point p € X, Bl,(X) is a smooth projective
surface and by the previous example, X is simpler than Bl,(X). Now, let us
give a notion of a “simplest model” in each birational class of surfaces.
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Definition 12 (Minimal surface). A smooth projective surface X is called a
minimal surface if for every birational morphism 7 : X — Y onto another
smooth projective surface Y, we have that 7 is a isomorphism.

Similar to Theorem |3| we have the following result:

Proposition 10 (Factorization of birational morphism of surfaces). Let 7 :
X — Y be a birational morphism between smooth surfaces. Then w is a com-
position of a finite number of blow-ups.

So, every smooth surface can be obtained from a minimal surface in its bira-
tional class by a sequence of blow-ups, in fact, by a finite sequence of blow-ups
because the Picard number increases by one in each blow-up. Now, given any
smooth surface X, we need to do the inverse operation of blow-up to find its
minimal surface. Thus, from the Castelnuono’s contractibility criterion (Propo-
sition [7]) we have a algorithm for the MMP for surfaces.

4.1 Classical version of the MMP for surfaces

1) Start with a smooth projective surface X with Picard number p = p(X) >
0.

2) If X does not contain a (—1)-curve, X is not the blowup of any smooth
surface and X is a minimal surface, stop.

3) If X contains a (—1)-curve, we use the Castelnuovo’s contractibility cri-
terion for blow it down. So, we get a birational morphism 7 : X — X’
with X’ a smooth surface and p(X') = p(X) — 1.

4) Replace X by X’ and return to step 1).

Since the Picard number decreases by one in each step, this procedure ends after
a finite number of repetitions.

In the birational class of the rational surfaces, the minimal surfaces are
exactly the minimal rational surfaces: P? and the F/,s (m # 1). So, the minimal
surface in a birational class may not be unique.

Example 14 (Blow-up of P? at two points). Let X be the blow-up of P? at
two points p and q. Consider L the line passing through those points. Note
that X has three (—1)-curves. The exceptional divisors E, and E, of blow-up
of p and ¢ respectively, and the strict transform of L, L. If we run the MMP
for X, we have three options of (—1)-curves to contract. If we first contract the
E, curve (or E,), the output of the program is the surface P2. But if we start
by contracting the L curve, we get from the MMP the surface Fy.

Note that the definition of a (—1)-curve uses the fact that the ambient variety
is a surface. So, the classical version of the MMP cannot be generalized to higher
dimensions easily.
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4.2 Introduction to the modern version of MMP for sur-
faces

Let us define some objects needed for the MMP (modern version).

Let X be a smooth surface, we can consider local algebraic coordinates
(or local analytic complex coordinates) x1,z2. Take fi, fo € C(X) such that
C(f1, f2) € C(X) is a finite algebraic extension. Given any g € C(X), g # 0, we
write formally s = ¢ - df; A dfs and call it a rational 2-form. We can compare
this rational 2-form to the volume element dxq, A dxo as follows:

s=g-dfi ndfe =Jg-dxy A dxs,

where J = det ’ gi } Note that zeros and poles of J are well defined. So, we can

get a divisor from s. Given a prime divisor D on X, define V(D) := V;,(D)
and
div(s) = > V4(D)D € Div(X).
D prime divisor
This divisor is a particular and important divisor on a surface X. Its divisor
class is frequently used in classification of surfaces.

Definition 13 (Canonical divisor of a surface). The canonical divisor or canon-
ical class of X is the divisor class Kx = div(s) where s is a 2-form.

It is a well-defined divisor class because two 2-form s, s” are related by s = hs’
where h € C(X)* and we have that div(s) = div(s") + div(h).

Example 15 (Canonical divisor for P?). Consider P? with homogeneous co-
ordinates u,v,w. Let U, = (w # 0) =~ A2 the open subset of P? with lo-
cal coordinates z,y. Take s = dxr A dy. Now, if we look at the open sub-
set U, = (u # 0) = A? with local coordinates s,t; the coordinate change is
r=1/te C(U,) = C(P?) and y = s/t € C(U,) = C(P?). We have that

dr  dx 1

Then s = deady = t%dSAdt and Kpz = div(s) = —3H, where H is a hyperplane
class.

Now, we will reformulate the MMP in terms of the canonical divisor. We
start by giving the following concepts.

Definition 14. Let D € Div(X) be a divisor on a smooth surface X. We say
that D is nef if D-C = 0 for every curve C' c X.

Remark 3. Let D be an effective divisor on a smooth surface X. The arithmetic
genus pq(D) of D is defined by

1
pa(D) = 1+§(KX+D)-D.
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In particular, if C is a curve, p,(C) coincides with the dimension of the space
of rational 1-form. So, p,(C) = 0. We also have that p,(C) = 0 if and only if
C =~ P. You can see [7, Section 1, Chapter IV] for more details.

The new notion of a “simplest model” will not be equivalent to the previous
one in the case of rational and ruled surfaces. But this notion can be generalized
in higher dimensions.

Definition 15 (Minimal model). We say that a smooth projective surface X
is a minimal model if K x is nef.

Remark 4. The canonical Kp2 is not nef. In fact, Kp» - H = —3H? = —3 < 0.
Thus, the minimal surfaces are not necessarily minimal models. From remark
we have the following result and it implies that every minimal model is a
minimal surface.

Proposition 11. Let C be a curve on a smooth surface X. Then C is a (—1)-
curve if and only if Kx - C < 0 and C? < 0.

We consider again N*(X), the R-vector space of divisors of a smooth surface
X, or equivalently the space of curves. A subset NV of any R-vector space V is
called a cone if 0 € N and N is closed under multiplication by positive scalars.
A subcone M < N is called extremal face if Yu,v € N with u + v € M, then
u,v € M. If M is an extremal face with dimension 1, we say that M is an
extremal ray.

Definition 16 (Mori cone). Let X be a smooth projective surface. Set
NE(X) = {Zai[Ci]\C’i cXisacurve, 0 <a; € R} c NY(X),

where [C;] is the numerical class of C;. It is a cone in N'(X) and its closure
NE(X) is called the Mori cone.

Any divisor D € Div(X) defines a linear function D : N'(X) — R given
by [C] — D - C where C is a curve on X (recall that N1(X) is generated by
the classes of the curves). We define NE(X)s¢ := {x € NE(X)|D -2 > 0} and
similarly NE(X)—g and NE(X)~g. If an extremal face M = NE(X) such that
M\{0} €« NE(X) < 0, we say that M is a D-negative extremal face.

The first step to the MMP is to contract some K y-negative extremal ray.
This is an analogue of contracting (—1)-curve in the classical version.

Definition 17. Let X be a smooth surface and R an extremal ray of NE(X).
A morphism ¢ : X — Y onto a normal projective variety Y with connected
fiber is a contraction of R if the following hold:

wr(C) for an irreducible curve C'is a point if and only if [C] € R.

The next theorem is the analogue to the Castelnuovo’s contractibility cri-
terion (Proposition [7)) and it asserts that the contraction of any K x-negative
extremal ray always exists. You can refer to [9, Theorem 1.28] for the proof.
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Theorem 8. Let X be a smooth projective surface and R € NE(X) a Kx-
negative extremal. Then R = Rxo[C] for some curve C < X with Kx - C < 0.
Furthermore, the contraction g of R exists and is one of the following type:

1) If C% < 0, then ¢r : X — Y is the blow-u p of a smooth surface Y at
one point; p(Y) = p(X) — 1.

2) If C? = 0, then or : X — Y realizes X as a scroll (see deﬁm'tz'on
over a smooth curve Y. Cis a fiber of pr and p(X) = 2.

3) If C? >0, then X = P? and pp: X — pt; p(X) = 1.

Definition 18. A morphism of the type 2) or type 3) in the previous theorem
is called Mori fiber space.

We already have the tools for describing the MMP.

1) Start with a smooth projective surface X with p = p(X).
2) If Kx is nef, X is a minimal model, stop.

3) If Kx is not nef, pick a K x-negative extremal ray R ¢ NFE(X) and apply
Theorem Bl

4) If pp : X — Y is the contraction with dim(Y) < 2, ¢gr is a Mori fiber
space, stop.

5) If pr : X — Y is the contraction with dimX = 2, X is the blow-up of a
smooth surface Y at one point and p(Y) = p(X) — 1.

6) Replace X by Y and return to step 1).

4.3 The MMP in higher dimensions

There is an intersection theory in higher dimensions. Let X be a smooth pro-
jective variety of dimension n. We have an intersection product resulting from
intersecting divisors and curves on X, where a divisor D on X is a formal sum
of irreducible closed subsets of X of codimension 1 (see . It is important
to mention that divisors and curves coincide only on surfaces. From rational
n-forms (defined in the same way as section we obtain the canonical divisor
Kx and it is nef if D - C = 0 for every curve C < X. The MMP (modern ver-
sion) can be extended to any dimension. Given a smooth projective variety X,
the first step is to ask if Kx is nef. If Kx is nef, X is a minimal model and we
stop. If Ky is not nef, the task is to find a K x-negative extremal ray R which
can be contracted. If pp : X — Y is its contraction we have two possibilities:

(a) dimX < dimY, then we stop the program and call pr : X — Y a
Mori fiber space, or

(b) dimX = dimY then we replace X by Y.
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The hope is that by repeating the procedure one ends up either with a variety
where Kx is nef (a minimal model) or with a variety of smaller dimension. We
have some problems. The first one is that in case (b) above the variety ¥ may
not be smooth, so we must allow varieties to acquire singularities. In higher
dimensions, the analogue of Theorem [§ is the Contraction Theorem (see [9,
Theorem 3.7]). A second problem is that this theorem is not valid for an arbi-
trary singular variety, then we must consider varieties with special singularities
and specific properties of Kx. The contraction ¢r of a Kx-negative extremal
ray R in such varieties can be of three types, refining the classification of pg
into types (a) and (b) above:

(1) Mori fiber space if dim(Y') < dim(X) and the exceptional locus of pg (i.e.
the points of X where g is not a local isomorphism) is X.

(2) Divisorial contraction if pg is a birational morphism and its exceptional
locus has codimension 1. This is, g contracts an unique divisor prime.
In this case p(Y) = p(X) — 1.

(3) Small contraction if g is a birational morphism and its exceptional locus
has codimension at least 2.

In situation (3), the variety Y has non-allowed singularities and so we cannot
replace X by Y. In this case, instead of contracting the K x-negative extremal

ray R, we perform a pseudo-isomorphism v : X » Xt (see definition
that substitutes the Kx-negative extremal ray R by a K x+-positive one R
and gives a map <p;§t + : Xt — Y from ¢ such that the following diagram
commutes.

X ¥ y X+
&Y%;J,

Therefore, we replace X by X' and continue with the program. Now a third
problem appears, we cannot guarantee that the program stops. Whenever we
replace the variety we have the three possibilities above. Every time we perform
a divisorial contraction the Picard number drops by one. Thus we have only a
finite sequence of divisorial contractions. The Picard number remains the same
for pseudo-isomorphisms and we cannot guarantee that a sequence of pseudo-
isomorphisms ends after finitely many steps. In fact, at present this is an open
problem and the most important one of the MMP, known by Termination of
flips. A good reference for more details is [I] and for a rigorous study of the
MMP you can refer to [9].

A simple example of a divisorial contraction is the blow-up of a surface at
one point. Now, let us give a formal definition of a pseudo-isomorphism.

Definition 19 (Pseudo-isomophism). A birational map f : X ——— Y between
projective varieties is called pseudo-isomorphism if it is an isomorphism in
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codimension 1, i.e., there exist open subsets U < X and V < Y such that
X\U and Y'\V have codimension > 2 and f|y : U — V. In this case we use

fiX Y.

We can easily verify that every pseudo-isomorphism between surfaces is an
isomorphism. Moreover, contractions of Kx-negative rays in the MMP for
surfaces are either blow-downs or Mori fiber spaces. Thus, in this case we do
not have small contractions.

5 The Cremona group in higher dimensions

In this section we discuss the results due to H. Hudson and I. Pan mentioned
in the introduction and explore the Sarkisov program for higher dimensions.

5.1 Generators of the Cremona group

As we already mentioned in the introduction, Hilda Hudson’s Theorem states
that there is no Noether-Castelnuovo Theorem in higher dimensions.

Theorem 9 (Hilda Hudson’s Theorem). For n = 3, Bir(P") cannot be gener-
ated by elements of bounded degree.

A recent and different proof of this theorem was given by Ivan Pan in 1999.
In fact he proved a more precise result (Theorem . Let us introduce a con-
struction of birational self-maps of P” from birational self-maps of P?~!.

Let P,Q € C[xg,...,z,] and Ry, ..., R, € C[zy, ..., x,] be homogeneous poly-
nomials such that deg(P) = deg(QR;) for i = 1,...,n. We define the following
rational maps:

¢P,Q,R PP ——— ]Pm7 ’(ﬂp’Q’R = (P : QRl Ceee st QRn)
’(/JR Pl Pn_l, PYr = (Rl L Rn)

Assume that d = deg(P), | = deg(Q), d = 1+1 > 2 and P, Q) are polynomials
such that P = zq P, + P, and Q = .’E()Ql +Q2 with P, PQ, Ql; QQ € (C[xh ,il'n]
of degree d — 1,d,l — 1,1, respectively and (P;,Q1) # (0,0). We have that
¥ pg,r is birational if and only if so is ¢ is (see [1I, Lemma 2]). Note that the
map ¥p,g,r contracts the hypersurface Z(Q) < P™ to the point (1:0: ... :0).
Conversely, for any hypersurface Z(Q) = P™ of degree ! with a point p of
multiplicity > [ — 1, we can find a birational self-map of P™ that contracts it to
a point (see [II], Corollary 3]).

Theorem 10 (Ivan Pan’s Theorem). For n > 3. Any set of group generators
of Bir(P™) contains uncountably many elements of unbounded degree.
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We will now give a sketch of the proof.

Proof. First, the set of hypersurfaces that are contracted by a birational
self-map of P™ is finite. Now, consider a family of hypersurfaces X; of degree
I = 3 given by the equation Q;(x1,x2,23) = 0, where every equation @; = 0
defines a smooth curve Cg, of degree [ on {xg = x4 = ... = z,,}. Note that X
is birationally equivalent to P"~2 x C, and, X is birationally equivalent to X
if and only if Cq, is isomorphic to Cg,. Since the set of isomorphism classes of
smooth cubics is a 1-parameter family (see [, Chapter IV, Theorem 4.1] and
[7, Chapter IV, Proposition 4.6.1]), we have uncountably many hypersurfaces
such that no pair of them are birationally equivalent.

For each i, construct as above a birational map 1; which contracts X; to
a point. We can check that if o1, ..., p,, are birational self-map of P and if
© = pm ©...0p1 contracts a hypersurface Y, then there exists ¢ € {1,...,m} and
a hypersurface Y; such that Y; is birationally equivalent to Y and ¢; contracts
Y;. Therefore, to generate Bir(P™) one needs at least as many elements in the
set of generators as elements in the family of surfaces X/s.

5.2 Sarkisov program

We will now turn our attention to smooth rational varieties. The outputs of the
MMP for smooth rational varieties are Mori fiber spaces.

Definition 20 (Rational variety). A variety X of dimension n is said to be
rational if it is birationally equivalent to P™.

Given a smooth rational variety Z, from the MMP we obtain a Mori fiber
space X and a sequence of birational morphisms

p: Z=Xg— Xy —..— X, =X —B.

However, neither X nor ¢ are unique. So, it is natural to study birational maps
between Mori fiber spaces in the same birational class. The Sarkisov program
of section can be generalized to any dimension. In this case, the idea is to
factor birational maps between Mori fiber spaces into elementary links.

Analogous to the case of surfaces, we have four types of elementary links.

5.2.1 Sarkisov links

Suppose that X — B and X’ — B’ are two Mori fiber spaces (sometimes we
write X/B instead of X — B). A Sarkisov link x : X ——— X' is of one of
four types:
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A />>, X/ 7 N Z/
X - B/ X 77777777777777777777 5 X/
B B="5
I I
X Y >y Z X - > X/
B T X/ B B/
B’ C
117 v
where the pseudo-isomorphism > is a composition of flips, flops or

anti-flips (see [3]); the maps Z — X and Z’ — X’ are divisorial contractions;
and the maps B — B’, B — B, B — C and B’ — C are birational
morphisms with relative Picard number 1 (see [3]).

Note that the corresponding diagram of Sarkisov links for surfaces are:

Fq = d 1
| l
13’(2 e ]gﬁ Fpp ----------—---4 > Frnt1
NS N
pt v
7 11
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117 A%

Theorem 11 (Sarkisov program). Every birational map ¢ : X ——— X' be-
tween Mori fiber spaces X —> B and X' — B’ is a composition of Sarkisov
links.

N
T Ty
= Xn ————=% Xq4 —=——-== c e e = 4
XlXO ¢1>)T ¢2> wk>XkJ(X
B = By By B, = B’

The algorithm for this program is the same as described in Theorem [ We
start by assigning ¢ a Sarkisov degree s.deg(y) and searching a link v such
that s.deg(p oy ?) < s.deg(p). We continue inductively with v; in place of .

Consider a birational map ¢ : X ——— X’ between Mori fiber spaces X —
B and X’ — B’. Its decomposition into Sarkisov links is not unique in general
and two such decompositions define a relation (see definition in the Sarkisov
program. If

¢:X/B=Xy/By ——— X1/B) ——— - ——— X},/Bp = X'/B’
and
¢:X/B=Xy/By ——— X,/B) ——— - ——— X;/B, = X'/B’
are two different decomposition of ¢, then
X/B = Xo/By ——— -+ ——— X},/By = X;/B; ——— --- ——— Xo/Bo = X/B

is an element of Aut(X) which commutes with the map X — B.

Definition 21 (Relations). A non-trivial relation in the Sarkisov program is a
composition of k > 2 Sarkisov links

Yooty € Aut(X,) (2)

which define an automorphism of Xy 1/Bg11 = X1/Bp that commutes with the
map X; — By, where ¢; : X;/B; ——— X;11/Bj1.

Definition 22 (Elementary relations). The relation is elementary if no
proper subchains of links forms a relation and ;.1 o %; is not a Sarkisov link,
foralli=1,...k—1.
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6 Proof strategy for Theorem 1

Finally, we will study Theorem [I| focusing on the techniques and tools which
were used in its proof. As we have seen in Theorem [5 the Jonquiere maps
generate the Cremona group Bir(P?). Theorem [l|says that this statement does
not hold in higher dimensions.

We are interested in constructing a surjective group homomorphism from
Bir(P™) to Z/2Z. The natural way for constructing a group homomorphism
f G — H is to take a set of generators of G and define its image by f in H,
so that the relations between such generators are preserved. So far, a specific
set of generators of Bir(P") is not known for n > 3. By Theorem we know
that every birational self-map of P™ is a composition of Sarkisov links. However,
these links do not generate Bir(P™), in fact, the Sarkisov links do not belong
to the Cremona group. This motivates us to consider the set BirMori(P™)
of birational maps between Mori fiber spaces birational to P™. Note that two
elements ¢, ¢’ € BirMori(P"), ¢ : X ——— Y and ¢’ : X’ ——— Y’ can only
be composed if Y = X’. Therefore, BirMori(P") is not a group but has a
groupoid structure.

Definition 23 (Groupoid). Let G be a set endowed with a product map
92 —>g7 (gvh)’—>gh7

where the set G2 < G x G is called the set of composable pairs, and an inverse
map

g —¢, g
such that for all f,g,h € G the following conditions hold:
i () =g
ii. If (g, h), (h,1) € G2, then (gh,1), (g, hl) € G*> and (gh)l = g(hl);
iii. (g7, 9) € G? and if (g,h) € G2, then g~1(gh) = h;
iv. (g,971) € G? and if (I,g) € G2, then (Ig)g~' = L.

Example 16. Let X — B be a Mori fiber space. The set of birational
maps between Mori fiber spaces birational to X, denoted by BirMori(X) is a
groupoid. Note that Bir(X) is a subgroupoid of BirMori(X).

The next result gives a representation of groupoid BirMori(X).
Theorem 12. Let X —> B be a Mori fiber space.

i) The groupoid BirMori(X) is generated by Sarkisov links and automor-
phisms.

ii) Any relation between Sarkisov links in BirMori(X) is generated by ele-
mentary relations.
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For a proof you can refer to [3 Theorem 4.28]. In particular, this theorem
holds for X = P".

The strategy of the proof. Let n > 3. Let us describe how we can
obtain the group homomorphism Bir(P") — Z/2Z from Theorem From
Sarkisov program and Theorem we have that any birational map between
two Mori fiber spaces is a composition of Sarkisov links and the relations between
Sarkisov links are generated by elementary relations. So, we proceed to con-
struct the groupoid BirMori(P™) where Sarkisov links and elementary relations
give it a representation. The group Bir(P") is a subgroupoid of BirMori(P™).
Now, we construct a groupoid homomorphism from BirMori(P") to a free
product of Z/27Z whose restriction to Bir(P™) gives the desired group homo-
morphism. The automorphisms and every Sarkisov link are mapped to identity
(except some special links) by the groupoid homomorphism and the elementary
relations are preserved. Restricting this groupoid homomorphism to Bir(P™)
and by Theorem E in [3], we have a surjective group homomorphism

Bir(P") —T» %7/27Z,
J

where the indexing set J has the same cardinality as C. By construction, auto-
morphisms of P" are sent onto the identity. It is possible to construct 7 so that
the Jonquiére maps are in its kernel. For that, a qualitative description of the
decomposition of the Jonquiere maps by elementary links is used. So,

IT(@)] < IS] <],

therefore there exists some factor Z/27Z such that it is not in 7(G). Thus, we
make the composition of 7 with the projection onto this factor and therefore we
achieve the desired homomorphism.

You can see more details about the tools used and the complete proof in [3].
As consequence of Theorem [I} the group Bir(P") is not simple, this result was
not known until then for n > 3.
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