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1 Introduction

The purpose of this project is to understand the group of the birational au-
tomorphisms of n-dimensional projective space by focusing on the study of
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its generators. This group is called the n-Cremona group and is denoted by
BirpPnq. An element ϕ P BirpPnq is an invertible rational self map of Pn, i.e.,

ϕ : Pn ´´Ñ Pn, ϕ “ pF0 : ... : Fnq,

where F0, ..., Fn are homogeneous polynomials of degree d without common
factor. The degree of ϕ is the integer d and it is denoted by degpϕq. Every
automorphism of Pn is a birational map, i.e., AutpPnq Ă BirpPnq is a sub-
group. Every rational map ϕ : P1 ´´Ñ P1 can be extended to P1. Thus
BirpP1q “ AutpP1q “ PGL2pCq (see example 1). The simplest example of
a birational automorphism of P2 that is not an isomorphism is the so called
standard quadratic transformation of the plane:

τ : P2 ´´Ñ P2, px : y : zq Þ Ñ́ pyz : xz : xyq,

Indeed, note that τ2px : y : zq “ px2yz : xy2z : xyz2q “ px : y : zq and therefore
τ is invertible as rational map (see example 3).

The group of birational automorphisms of an algebraic variety is a birational
invariant and therefore an important object of study in birational geometry.
Furthermore, more recently it has had applications in discrete and continuous
complex dynamics.

The Cremona group was introduced by the Italian mathematician Luigi Cre-
mona in 1863-1865. At the end of the 19th century, Max Noether stated that
every birational automorphism of P2 is a composition of projective linear trans-
formations and the standard quadratic transformation. Therefore,

BirpP2q “ xAutpP2q, τy. (1)

Noether’s idea to show this claim was to consider a birational automorphism of
P2, then take a quadratic transformation q satisfying particular properties such
that degpφ ˝ qq ă degpφq. Thus, by induction, we obtain a map of degree 1, this
is a projective linear transformation. However, such quadratic transformation
may not exist. The first complete proof is due to Guido Castelnuovo [4]. The
strategy in Castelnuovo’s proof was based on two decomposition steps. First,
he showed that any birational automorphism of P2 can be factored as a com-
position of Jonquière maps, i.e., maps which preserve a pencil of lines. Second,
he proved that such maps decompose into quadratic maps. As a consequence
of Noether-Castelnuovo Theorem and its proof, the Jonquière maps and linear
transformations generate the 2-Cremona group.

In higher dimensions the birational geometry of projective varieties becomes
more complicated. We do not have an analogue of the Noether-Castelnuovo
Theorem. Hilda Hudson [8] and Ivan Pan [11] proved that any set of group
generators of the n-Cremona group, n ě 3, contains uncountably many trans-
formations of unbounded degree. More recently, J. Blanc, S. Lamy and S.
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Zimmermann [3] showed that BirpPnq, n ě 3, is not generated by AutpPnq, the
Jonquière maps and any subset that has a smaller cardinality than that of C.
In fact, their result is:

Theorem 1. Fix n ě 3. Let S Ă BirpPnq be a subset of elements in the n-
Cremona group that has cardinality smaller than that of C, and let G Ă BirpPnq
be the subgroup generated by AutpPnq, all Jonquière maps and S. Then, there
exists a surjective group homomorphism

BirpPnq Z{2Z,

such that G is contained is its kernel. In particular, G is a proper subgroup of
BirpPnq.

Theorem 1 is the motivation of our work. We are interested in studying its
proof and some tools used in [3]. To show this last result, Blanc, Lamy and
Zimmermann used a powerful tool coming from the MMP. This is called the
Sarkisov Program, which provides a decomposition of any birational automor-
phism of Pn into elementary links, called Sarkisov links.

All the results mentioned so far, as well as the results we will present in this
document, are valid for any algebraically closed field of characteristic zero. For
simplicity, throughout this project we work over the field C of complex numbers.

2 Preliminaries

In this short section we want to establish the notation and state some basic
results that will allow us to understand the remaining sections. We skip most
of the proofs and focus on examples that are important in the development of
this work. We refer to [7] and [12] for proofs and more details.

2.1 First definitions and properties

Let us recall some classical notions of algebraic geometry that we will need.

The n-dimensional complex projective space CPn can be defined as a com-
pactification of Cn that adds a new point for every direction in Cn, i.e., CPn “
Cn Y CPn´1. Or equivalently

CPn “ Pn :“ Cn`1zt0u
M

px0, ..., xnq „ pλx0, ..., λxnq, λ P Czt0u.

We denote by px0 : ... : xnq P Pn the equivalence class of px0, ..., xnq P Cn`1.
We say that x0, ..., xn are the homogeneous coordinates of Pn. An algebraic set
X Ď Pn is the locus of points satisfying a set of polynomial equations, i.e.,

X “ ZpF1, ..., Fkq :“ tpx1 : ... : xnq P Pn
|F1px1, ..., xnq “ ¨ ¨ ¨ “ Fkpx1, ..., xnq “ 0u,
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where each Fi P Crx1, ..., xns is a homogeneous polynomial. If F P Crx0, ..., xns
is a homogeneous polynomial, the algebraic set ZpF q is said to be a hypersurface
defined by F . If F is of degree one, ZpF q is called a hyperplane. We say X Ď Pn
is irreducible if X is not the union of proper algebraic subsets of X, i.e., if any
writing X “ X1YX2, where X1, X2 are two algebraic sets implies that X “ X1

or X “ X2. The Zariski topology on Pn is the topology whose closed subsets
are the algebraic sets of Pn. We say that X is a projective algebraic variety if
X is an irreducible algebraic set Pn.

We define the ring of regular functions OpXq as the set of functions f :
X Ñ́ C such that for any point x P X there is an open neighborhood U Ă X
of x, and two homogeneous polynomials F,G P Crx0, ..., xns of the same degree
with G not vanishing at any point of U , such that f “ F {Q on U . We define
the field of rational functions CpXq as a set of equivalence classes of pairs pU, fq
where U Ă X is an open set and f P OpUq. Where two pairs pU, fq and pV, gq
are equivalent if f “ g on U X V . We have that OpPnq “ CpPq “ C, while
CpPnq – Cpy1, ..., ynq.

Let X Ď Pn and Y Ď Pm be projective varieties. A morphism ϕ : X Ñ́ Y
between projective varieties is a map such that for any point x P X, there
is an open subset U Ď X which contains x, and homogeneous polynomials
F0, ..., Fm P Crx0, ..., xns of the same degree such that @y P U , Fipyq ‰ 0 for
some i P t0, ..,mu and ϕpyq “ pF0pyq : ... : Fmpyqq. When X and Y are
projective spaces, any morphism is globally polynomial.

Proposition 1. Let ϕ : Pn Ñ́ Pm be a morphism of projective varieties. Then,
there exist homogeneous polynomials F0, ..., Fm P Crx0, ..., xns of the same degree
such that @x P Pn, ϕpxq “ pF0pxq : ... : Fmpxqq.

We say that ϕ : X Ñ́ Y is an isomorphism if there exists a morphism
ψ : Y Ñ́ X such that ψ ˝ ϕ “ IdX and ϕ ˝ ψ “ IdY .

Example 1 (Automorphisms of Pn). An automorphism ϕ : Pn Ñ́ Pn is given
by ϕpxq “ pF0pxq : ... : Fnpxqq where F0, ..., Fn P Crx0, ..., xns are linearly
independent homogeneous polynomials of degree 1. We see that Fi “ ai0x0 `
... ` ainxn, so we obtain an isomorphism between AutpPnq and PGLn`1pCq,
where for each φ corresponds the equivalence class paijq0ďi,jďn.

Remark 1 (Pull-back of rational functions). If ϕ : X Ñ́ Y is a morphism
between projective surfaces and f P CpY q˚ is a rational function on Y , the
pull-back of f by ϕ defined by ϕ˚f :“ f ˝ ϕ is a rational function on X.

Now, let us define a more general type of map between projective varieties
which is important for their classification.

Definition 1 (Rationals Maps). Let X Ď Pn and Y Ď Pm be projective va-
rieties. A rational map, denoted by ϕ : X ´´Ñ Y , is a morphism from a
non-empty open subset U Ď X to Y which cannot be extended to any larger
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open set. We say that ϕ is defined at x P X if x P U . The indeterminacy set of
ϕ is defined by Indpϕq “ XzU .

Remark 2. If U Ă X is an open subset and ϕ : U Ñ́ Y is a morphism. Then
ϕ can be extended in a unique way to a rational map, i.e., if ϕ,ψ : X ´´Ñ Y
are rational maps that coincide on a non-empty open subset then ϕ “ ψ.

When X “ Y “ Pn, rational maps can be described in a simpler way.

Proposition 2 (Rational Maps of Pn). Let ϕ : Pn ´´Ñ Pn be a rational map.
Then, there exist homogeneous polynomials F0, ..., Fn P Crx0, ..., xns of the same
degree, without common factors, such that ϕpx0 : ... : xnq “ pF0px0, ..., xnq : ... :
Fnpx0, ..., xnqq.

As a consequence, Indpϕq “ ZpF0, ..., Fnq is a closed subset of Pn of codi-
mension ě 2. Since the polynomials that describe ϕ are of same degree, we can
define the degree of ϕ as being degpϕq “ degpFiq.

In general, a rational map ϕ : X ´´Ñ Y is called birational if there exist
non-empty open subsets U Ď Pn and V Ď Pm such that ϕ|U : U

„
´́Ñ V is an

isomorphism. In this case, X and Y are said to be birationally equivalent or
simply birational.

Here are two examples that play an important role in the main results of
this text.

Example 2. Every automorphism ϕ : Pn Ñ́ Pn is a birational map, where
the open sets are U “ V “ Pn, Indpϕq “ H and degpϕq “ 1.

Example 3 (Standard Quadratic Transformation). Consider the complex pro-
jective plane P2 with homogeneous coordinates x, y, z. The rational map τ :
P2 ´´Ñ P2 defined by

px : y : zq ´´Ñ pyz : xz : xyq

is called standard quadratic transformation. Fixing the points p1 “ p1 : 0 : 0q,
p2 “ p0 : 1 : 0q and p3 “ p0 : 0 : 1q, we can see that τ is defined on the open set
P2ztp1, p2, p3u. Consider the lines L1 “ Zpxq, L2 “ Zpyq and L3 “ Zpzq, we
have that τpLiq “ pi. These lines are called the exceptional lines.

If we consider the open set U :“ P2zZpxyzq and px : y : zq P U , we can see
that τpτpx : y : zqq “ px : y : zq, that is, τ |U : U Ñ́ U is an isomorphism.
Therefore, τ is a birational map, with τ´1 “ τ , Indpτq “ tp1, p2, p3u and
degpτq “ 2.

2.2 Divisors

Now, we will study the notion of divisors on projective varieties.
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Figure 1: Standard quadratic transformation.

Let X a projective algebraic variety. A prime divisor D on X is simply a
closed subvariety of X of codimension 1.

Example 4. If X is a curve, the prime divisors are exactly the points of X.
If X is a surface, the prime divisors are the irreducible curves that lie on X.
If X “ Pn, the prime divisors corresponds to irreducible hypersurfaces, i.e.,
D “ ZpF q, where F P Crx0, ...., xns is an irreducible homogeneous polynomial.

A Weil divisor on X is a formal finite sum of prime divisor with integer
coefficients. These divisors form an abelian group, denoted by DivpXq.

DivpXq “

#

m
ÿ

i“1

aiDi|m P N, ai P Z, Di is a prime divisor on X, for i “ 1, ...,m

+

.

If D “
ř

aiDi is a Weil divisor, we call D effective if ai ě 0 for every i.
Given a rational function f P CpXq˚, for every prime divisor D we associate
the integer Vf pDq as follows: Vf pDq “ k ą 0 if f vanishes on D at the order
k; Vf pDq “ ´k ă 0 if f has a pole of order k on D, and Vf pDq “ 0 otherwise.
Vf pDq is called multiplicity of f at D. Since Vf pDq “ 0 for all but finitely many
D, we define

Divpfq “
ÿ

D prime divisor

Vf pDqD P DivpXq.

The divisors obtained in this way are called principal divisors. If f, g P CpXq
are rational functions, then divpfgq “ divpfq ` divpgq. It follows that principal
divisors form a subgroup of DivpXq.

Two divisors D,D1 on X are linearly equivalent is D ´ D1 is a principal
divisor. We represent this relation as D „ D1. The quotient of DivpXq by the
subgroup of principal divisors is denoted by ClpXq and is called divisor class
group.
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Example 5 (Divisors of Pn). Any Weil divisor D on Pn is given by D “
řm
i“1 aiYi, where ai P Z and Yi is an irreducible hypersurface. We define degree

of D by degD “
ř

aidegpYiq, where degpYiq is the degree of the irreducible
polynomial that defines Yi.

We refer [7, Proposition 6.4, Chapter II] to for the proof of the following
proposition.

Proposition 3. Let H be a hypersuperface of Pn. We have the following:

i) For any f P CpPnq˚, degpdivpfqq “ 0.

ii) If D is a divisor of degree d in Pn, then D „ dH.

iii) θ : DivpPnq Ñ́ Z, defined by θpDq “ degpDq is a group homomorphism
and induces a group isomorphism θ : ClpPnq Ñ́ Z.

As consequence, we have that ClpPnq “ ZrHs.

2.2.1 Locally principal divisors

Suppose that X is a smooth projective variety and D is a divisor on X. Then,
every point x P X has a neighbourhood in which D is principal. Indeed, for
any prime divisor D and any point x P X there exists an open neighbourhood
U Ă X of x in which D is defined by a local equation f , where f P CpXq˚. So,
if D “

ř

aiDi we can take an open set U with x P U in which each of the Di is
defined by fi, then we have D “ divpfq, where f “

ś

faii .

Definition 2 (Pull-back of divisors). Let X and Y be smooth projective vari-
eties and ϕ : X Ñ́ Y a surjective morphism. Let D P DivpY q, D “

ř

aiDi.
We define the pull-back of D ϕ˚ P DivpXq as

ϕ˚D :“
ÿ

aiϕ
˚Di,

where, if Di is locally defined by fi, ϕ
˚Di is locally defined by ϕ˚fi (see remark

1).

3 Surfaces

In this section, we want to focus on studying the plane Cremona group, BirpP2q.
We will study the celebrated Noehter-Castelnuovo theorem from a modern point
of view. More precisely, using the Sarkisov program: a fundamental tool in the
current study of Birational Geometry. One of the most important features of
this tool is that it can be generalized to higher dimensions. In order to explain
the Sarkisov program, we need to introduce some fundamental concepts from
intersection theory and birational geometry of projective surfaces.

Throughout this section, we refer to X as a surface if it is a smooth projective
surface over C. Recall from example 4 that irreducible curves on X are the prime
divisors of X.
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3.1 Intersection of two curves on a surface

Theorem 2 (Intersection form on surfaces). Let X be a surface. There exists
a unique symmetric bilinear form

¨ : DivpXq ˆDivpXq Ñ́ Z
pC,Dq Þ Ñ́ C ¨D

such that:

1) If C and D are smooth curves on X meeting transversely, then, C ¨D “

#pC XDq, the number of points of C XD.

2) If C „ C 1, then C ¨D “ C 1 ¨D for any D P DivpXq. This means that the
intersection number C ¨D depends only on the linear equivalence classes
of C and D.

For a proof we refer to [7, Theorem 1.1, Chapter V]. By 2), ¨ induces an
intersection form ClpXq ˆ ClpXq Ñ́ Z.

Example 6. If X “ P2, the intersection form is given as follows: If C,D are
curves of degree n and m respectively, then C ¨D “ mn. Indeed, let L be a line
in P2, L2 “ L ¨ L “ 1. This follows from the fact that two different lines meet
transversally at a single point and are linearly equivalent. Since C „ nL and
D „ mL, then C ¨D “ nL ¨mL “ nmL2 “ nm.

3.2 Blow-up of a surface at a point

A classical example of morphism which is birational but not an isomorphism is
the blow-up. The basic idea of blow-ups in algebraic geometry is to remove a
point from an algebraic variety and replace it by all the directions pointing out
of that point (see figure 2). The blow-up plays a fundamental role in the theory
of resolution of singularities and in our case it is an indispensable tool.

Let p be a point in a surface X, we say that π : Y Ñ́ X is the blow-up of
X at p if:

• Y is a smooth projective surface,

• π|Y zπ´1ppq : Y zπ´1ppq Ñ́ Xztpu is an isomorphism,

• π´1ppq – P1

We call E :“ π´1ppq the exceptional divisor or exceptional curve of the blow-up.
The blow-up of a surface at a point is well defined. In fact, we have the following
universal property:

Proposition 4 (Universal property of the blow-up). Let π : Y Ñ́ X and
π1 : Y 1 Ñ́ X be blow-ups of X at p P X. There is a unique isomorphism
ϕ : Y Ñ́ Y 1 such that π1ϕ “ π.
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We refer to [7, Proposition 7.14, Chapter II] for the proof. We denote the
blow-up of X at p by BlppXq. Given an irreducible curve C passing through p,

we define C̃ :“ π´1pCztpuq Ď BlppXq. C̃ is called the strict transform of C.

Let π : BlppXq Ñ́ X be the blow-up of X at p P X. The birational
morphism π induces a group homomorphism

π˚ : ClpXq Ñ́ ClpBlppXqq, C Þ Ñ́ π˚pCq,

(see definition 2).

Now, suppose that X is birational to P2 (see Definition 6), which will be the
case of all the surfaces that we will treat. If C Ă X is a curve and p is a point
of x, we can find an affine open neighbourhood (local chart) U of p in X with
U Ď C2. Also, we can assume that p “ p0, 0q and that C is described by the
local equation f “

řn
i“1 Fipx, yq “ 0 in this affine neighborhood, where F 1is are

homogeneous polynomials of degree i.

Definition 3 (Multiplicity of a curve at a point). Let C Ă X be a curve on X
and let f be a local equation of C at the point p as above. The multiplicity of
C at p, mppCq, is the lowest i such that Fi is not equal to 0.

We have the following properties:

i) mppCq ě 0;

ii) mppCq “ 0 if and only if p R C;

iii) mppCq “ 1 if and only if p is a smooth point of C.

Now, we have a specific description of π˚pCq for C a curve on X:

Proposition 5. Let π : BlppXq Ñ́ X be the blow-up of X at p P X. If C is a
curve on X, then

π˚pCq “ C̃ `mppCqE,

where C̃ is the strict transform if C and E “ π´1ppq is the exceptional divisor.

The following proposition gives a characterization of the divisor class group
of the blow-up and describes the intersection form on BlpX induced by the
intersection form on X.

Proposition 6. Let π : BlppXq Ñ́ X be the blow-up of X at p P X. Denote
by E Ă BlppXq the exceptional divisor π´1ppq – P1. Then,

ClpBlppXqq “ π˚pClpXqq ‘ Z ¨ rEs.

Furthermore, the intersection form on BlppXq is induced by the intersection
form on X by the following formulas:

1) π˚pCq ¨ π˚pDq “ C ¨D for any C,D P ClpXq,
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2) π˚pCq ¨ E “ 0 for any C P ClpXq,

3) E2 “ E ¨ E “ ´1,

For the proofs of previous propositions, we refer to [7, Proposition 3.6, Chap-
ter V] and [7, Proposition 3.2, Chapter V] respectively.

On a surface, curves with properties such as the exceptional divisor have a
particular name.

Definition 4 ((´1)-curve). A curve C on a surface X is said to be a p´1q-curve
if C2 “ ´1 and C – P1.

From Proposition 6, the exceptional divisor of a blow-up of a surface at a
point is a p´1q-curve. A natural question is: Is any p´1q-curve in a surface Y
the exceptional divisor of some blow-up of a surface at a point? The answer is:

Proposition 7 (Castelnuovo’s contractibility criterion). Let C Ă Y be a p´1q-
curve in a surface Y . Then, there exists a surface X, a point p P X and a
morphism π : Y Ñ́ X, such that Y zC – Xztpu via π, and C is the exceptional
divisor.

For a proof we refer to [7, Theorem 5.7, Chapter V].

3.2.1 Blow-up of P2 at a point

In order to understand the blow-up construction of the blow-up, we restrict our
focus to the smooth surface X “ P2.

For a point p P P2, say p “ p0 : 0 : 1q. Consider the projection from the
point p, πp : P2 ´´Ñ P1 given by px : y : zq Þ Ñ́ px : yq. This is a rational map
defined in P2ztpu. Let Γπp

“ tppx : y : zq, px : yqq|px : y : zq ‰ pu Ă P2 ˆ P1 be

the graph of πp. Define X :“ Γπp the closure of Γπp in P2 ˆ P1 (see figure 2).

Proposition 8. (Blow-up of P2 at p). The map π : X Ñ́ P2 is the blow-up of
P2 at p, where π is the projection on the first factor.

Indeed, let ppx : y : zq, pt : sqq be homogeneous coordinates for P2 ˆ P1. We
can see that X “ Zpxs ´ ytq Ă P2 ˆ P1, then E “ π´1ppq “ tpu ˆ P1 – P1

is the exceptional divisor of the blow-up, and π restricts to an isomorphism
π|XzE : XzE

„
´́Ñ P2ztpu.

Let C be a curve passing through p, C̃ “ π´1pCztpuq is the strict transform
of C (see figure 2).

Theorem 3 (Resolution of Indeterminacy). Let ϕ : P2 ´´Ñ P2 be a birational
map. Then there exists a surface X and a morphism ψ : X Ñ́ P2 which is the
composition of a finite number of blow-ups such that the composition ϕ ˝ ψ is a
morphism.

10



Figure 2: Blow-up of P2 at the point p.

We refer to [12, Theorem 3, Chapter IV] for the proof of the previous the-
orem but let us give an idea. Given a birational map ϕ : P2 ´´Ñ P2, the
indeterminacy set Indpϕq is finite. If there exists p1 P Indpϕq, denote by
π1 : X1 Ñ́ P2 the blow-up at this point. The map ϕ1 “ ϕ ˝ π1 is a bira-
tional map ϕ1 : X1 ´´Ñ P2. If Indpϕ1q ‰ H, take p2 a indeterminacy point
of ϕ1 denoted by π2 : X2 Ñ́ P2 its blow-up. Again, the map ϕ2 “ ϕ1 ˝ π1 is
a birational map ϕ2 : X2 ´´Ñ P2. We iterate this process until ϕt becomes a
morphism. Such t exists.

Xt

...

X1

P2 P2

πt

π1

ϕ

ϕt

Example 7. Consider the standard quadratic transformation τ . By example
3, the indeterminacy points are p1 : 0 : 0q, p0 : 1 : 0q and p0 : 0 : 1q. Applying
the previous process we have the following figure
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Figure 3: Resolution of indeterminacy of τ .

3.3 Ruled surfaces

Let us now focus our attention on ruled surfaces. We will see how to construct
the Hirzebruch surfaces Fn and their intersection forms. These surfaces play a
fundamental role in the Sarkisov program.

Definition 5 (Ruled surfaces). Let X be a surface. We say that X is a scroll
if there is a surjective morphism π : X Ñ́ B onto a smooth curve B whose
fibers are all isomorphic to P1. A surface birationally equivalent to a scroll is
called a ruled surface.

Definition 6 (Rational surfaces). We say that a surface X is rational if there
is a birational map φ : X ´´Ñ P2.

Example 8. P1 ˆ P1 is a rational surface. In fact, let ppt : sq, pu : vqq and
px : y : zq be the homogeneous coordinates of P1 ˆ P1 and P2 respectively.
Consider the open sets U “ pP1zZptqqˆpP1zZpuqq Ă P1ˆP1, V “ P2zZpxq and
the isomorphism ϕ : U Ñ́ V defined by pp1 : sq, p1 : vq Þ Ñ́ p1 : s : vq. Then, ϕ
can be extended in a unique way to a birational map from P1 ˆ P1 to P2.

Example 9 (Construction of Hirzebruch surfaces). Consider the surface P1ˆP1

and m P N. Let us take the m lines Li “ pi : 1q ˆ P1, 1 ď i ď m, and
L “ P1 ˆ p0 : 1q. Let p1, ..., pm P P1 ˆ P1 be the intersection points of the lines
L1, ..., Lm with L respectively. Blowing up the surface at these m points we get
a surface with E1, ..., Em and L̃1, ..., L̃m p´1q-curves, where Ei is the exceptional
curve of blow-up of pi in P1 ˆ P1, L̃i is the strict transform of the line Li, and
L̃i X L̃j “ H for 1 ď i ‰ j ď m. By Castelnuovo’s criterion (proposition 7), we

12



can contract every curve L̃i to a point. The surface we get is called Hirzebruch
surface Fm. After these blow-ups and blow-downs, we have a birational map
ϕm : P1 ˆ P1 ´´Ñ Fm. This surface has the structure of a P1-bundle over P1

π : Fm Ñ́ P1. Denote by f a fiber of π and by E “ ϕpLq – P1, if m ě 1, E is
the unique section such that E2 “ ´m. In fact, for any section E1 of π different
from E, we have that E12 ě m. By Proposition 6 we have

ClpFmq “ Zrf s ‘ ZrEs

and the intersection form on Fm is given by:

• f2 “ 0;

• f ¨ E “ 1;

• E2 “ ´m.

Figure 4: Construction of Hirzebruch surfaces.

We write F0 “ P1 ˆ P1. For n “ 1 we can see that F1 is isomorphic to the
blow-up of P2 at one point.

Definition 7 (Rational ruled surfaces). Let X be a surface. We say that X is
a rational ruled surface if there is a surjective morphism π : X Ñ́ P1 such that
every fiber of π is isomorphic to P1.

Example 10. Hizerbruch surfaces are rational ruled surfaces. If we have that
Fm – Fn, then m “ n.

13



The following result states that the only rational ruled surfaces are the Hizer-
bruch surfaces (up to isomorphism).

Proposition 9. Let X be a rational ruled surface. Then, there exists n ě 0
such that X

„
´́Ñ Fn.

Definition 8 (Minimal rational surfaces). P2 together with Hizerbruch surfaces
can be considered the simplest surfaces in the birational class of rational surfaces
and are called minimal rational surfaces (see Section 4).

3.4 Birational automorphisms of the plane

Now, let us study the birational self maps of P2. Since P2 is a smooth surface,
we can apply previous results. Let px : y : zq be homogeneous coordinates for
P2.

Definition 9 (The Cremona group of the plane). The group of all birational
maps φ : P2 ´´Ñ P2 is called the Cremona group of the plane, and is de-
noted by BirpP2q. An element φ : P2 ´´Ñ P2 in BirpP2q is called birational
transformation of P2 or Cremona transformation and is given by

px : y : zq Þ Ñ́ pF0px, y, zq : F1px, y, zq : F2px, y, zqq,

for some homogeneous polynomials F0, F1, F2 P Crx, y, zs of the same degree d,
without common factors. We defined the degree of φ by degpφq :“ d and the
indeterminacy set of φ by Indpφq :“ ZpF0, F1, F2q.

As we saw in the previous section, AutpP2q is a subgroup of BirpP2q. Any
element of AutpP2q is a Cremona map of degree 1. Let us recall that the standard
quadratic transformation τ : P2 ´´Ñ P2 is defined by

px : y : zq Þ Ñ́ pyz : xz : xyq,

having degree 2. The following is the celebrated theorem of Max Noether and
Guido Castelnuovo:

Theorem 4 (Noether-Castelnuevo Theorem). The group BirpP2q is generated
by AutpP2q and the standard quadratic transformation. That is

BirpP2q “ xAutpP2q, τy.

As we mentioned in the introduction, this theorem was proved by Casteln-
uovo using particular Cremona maps.

Definition 10 (Jonquère maps). Let J : P2 ´´Ñ P2 be a birational self map
of P2. J is said to be a Jonquière map if there exists p, q P P2 such that J
takes all lines going through p to lines going through q (up to a finite number
of lines).

14



Figure 5: Jonquière map.

Example 11. The standard quadratic transformation is a Jonquière map. In
fact, take p “ q “ p0 : 0 : 1q and L any line in P2 passing through p. If L is
different from Zpxq and Zpyq, JpLq is a line going through p.

Figure 6: The standard quadratic transformation is a Jonquière map.

The strategy of proof of Nother-Castelnuovo Theorem given by castelnuovo
is based on two decomposition steps. The first step is:

Theorem 5. Every birational self map of P2 can be factored as a composition
of Jonquière maps.

The second step is:

Theorem 6. Every Jonquière map is written as composition of automorphisms
of P2 and τ .

3.5 Sarkisov program of the plane

J. Kollár, K. Smith and A. Corti gave another proof of Theorem 4. Their proof
follows the general outline of Castelnuovo’s proof, with a modern point of view,
with a perspective from the Sarkisov program (see [10, Section 2.5]).

Definition 11 (Sarkisov program). The Sarkisov program is an algorithm for
decomposing birational maps between minimal rational surfaces into elementary
links.

Before giving a description of the program, let us define such elementary
links.
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3.5.1 Sarkisov links

There are four types of elementary links:

I The inverse χ1 : P2 ´´Ñ F1 of a point blow-up.

II The elementary transformation χ2 : Fm ´´Ñ Fm˘1, defined as the blow-
ing up of a point p P Fm , followed by the contraction of the birational
transform of the fiber through p (see figures 7 and 8).

III The blow-up χ3 : F1 Ñ́ P2 of a point p P P2.

IV The morphism χ4 : P1 ˆ P1 Ñ́ P1 ˆ P1 which exchanges the two factors.

We have two cases in the link of type II:

II.1 If p P Fm belongs to the negative section E of Fm (or m “ 0), the elemen-
tary link is χ2 : Fm ´´Ñ Fm`1. In fact, let π : BlppFmq Ñ́ Fm be the
blow-up of the point p and let F be its exceptional divisor. By Proposi-
tion 6, the strict transform Ẽ of the negative section E has self-intersection
Ẽ2 “ m´1. Let f be the fiber through p and f̃ its strict transform. Then
f̃ is a p´1q-curve in BlppFmq and we have that Ẽ ¨f̃ “ 0. From Proposition
7, there exists π1 : BlppFmq Ñ́ Y where Y is a rational ruled surface,

which contracts f̃ to a point q. Thus, BlppFmq “ BlqpY q and we have

that E1 :“ π1pẼq is a section of Y Ñ́ P1 with self-intersection ´m ´ 1.
By proposition 9, Y – Fn for some integer n ě 0. Therefore, Y – Fm`1

because Y has a unique curve with negative self-intersection.

Figure 7: Sarkisov link of type II with p P E.

II.2 If m ě 1 and p P Fm does not belong to the negative section E of Fm, the
elementary link is χ2 : Fm ´´Ñ Fm´1. By a similar argument as above
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we have that Ẽ2 “ ´m and Ẽ ¨ f̃ “ 1 in BlppFmq. So, contracting f̃ ,

E1 “ π1pẼq has self-intersection ´m` 1 and we get the Fm´1 surface.

Figure 8: Sarkisov link of type (II) with p R E.

Note that the elementary links are birational maps between minimal rational
surfaces.

Example 12. The map ϕm : P1 ˆ P1 ´´Ñ Fm in example 9 is factored by m
elementary links of type (II) 3.5.1. Indeed, take the lines L1, ..., Lm, L and the
points p1, ..., pm as in 9. By blowing up of point p1 and then contracting the
strict transform of L1, we get the surface F1. By abuse of notation we use the
same symbols L2, ..., Lm and L to denote the curves in P1ˆP1 and their images
in F1, and likewise we use p2, ..., pm to denote the intersections of L2, ..., Lm
with L. Now, we perform the blow-up of p2 and then we contract the strict
transform of L2. Thus, we get the surface F2. We iterate this process until we
have blown-up the point pm and we obtain the Fm surface.

Now, we will describe the Sarkisov program.

Theorem 7 (Sarkisov program for surfaces). Every birational transformation
between minimal rational surfaces is a composition of Sarkisov links.

Given a map ϕ : P2 ´´Ñ P2, let us describe the algorithm for constructing
a factorization in the Sarkisov program. For this, we need to consider more
generally birational maps from P2 or Fm, m ě 0, to P2.

Given a map ψ : X ´´Ñ P2, where X “ P2 or X “ Fm, for m ě 0. We
find a elementary link ψ1 : X ´´Ñ X1, with X1 “ P2 or X1 “ F1m, such that
β1 :“ ψ ˝ ψ´1

1 is “simpler” than ψ. Again, we proceed to find an elementary
Sarkisov link ψ2 : X1 ´´Ñ X2 such that β2 :“ β1 ˝ψ

´1
2 is simpler than β1. We
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continue in this manner and then the Sarkisov program will give us the following
factorization for ϕ : P2 ´´Ñ P2

P2 X1 X2 ¨ ¨ ¨ Xn “ P2
ψ1 ψ2 ψ3 ψn

ϕ

Any birational map from a minimal rational surface to P2 has a corresponding
Sarkisov degree. This is a numerical invariant that measures the complexity of
the map. For example, if ϕ : P2 ´´Ñ P2 is defined by homogeneous polyno-
mials F0, F1, F2 of the same degree d, the Sarkisov degree, denoted by s.degpϕq
is d. In the previous algorithm, by “β1 is simpler than ψ”, we mean that
s.degpβ1q ď s.degpψq. Therefore, such factorization into Sarkisov links is done
by induction on the Sarkisov degree.

4 Minimal Model Program

The Minimal Model Program (MMP) is a program for the construction a “sim-
plest” representatives of each birational class of projective varieties. In this
section, we will give a description of the Minimal Model Program for surfaces
and at the end we will discuss the generalizations to higher dimensions. Before
describing the MMP for surfaces, let us give some important definitions.

Let X be a smooth projective surface. From the intersection form in Theo-
rem 2, we obtain another equivalence relation in DivpXq: let D,D1 P DivpXq
be divisors on X, they are said to be numerically equivalent if D ¨ C “ D1 ¨ C
for every curve C Ă X and we denote this by D ” D1. The quotient group of
DivpXq by the equivalence relation ” is denoted by NumpXq and the Neron-
Severi Theorem asserts that this abelian group is finitely generated. Its rank is
denoted by ρpXq and is called the Picard number of X.

We define the ρpXq-dimensional R-vector space N1pXq :“ NumpXq bZ R.
The intersection form on X induces a nondegenerate symmetric bilinear form
¨ : N1pXq ˆN1pXq Ñ́ R.

Example 13. Let π : BlppXq Ñ́ X be the blow-up of X at p P X. Denote
by E Ă BlppXq the exceptional divisor π´1ppq – P1. Similar to Theorem 6, we
have that N1pBlppXqq “ π˚pN1pXqq ‘R ¨ rEs and thus ρpBlppXqq “ ρpXq ` 1.

In the case of surfaces, if X,Y are smooth projective surfaces, by “X is
simpler than Y ” we mean that ρpXq ă ρpY q. Note that if BlppXq is the blow-up
of a smooth projective surface X at point p P X, BlppXq is a smooth projective
surface and by the previous example, X is simpler than BlppXq. Now, let us
give a notion of a “simplest model” in each birational class of surfaces.
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Definition 12 (Minimal surface). A smooth projective surface X is called a
minimal surface if for every birational morphism π : X Ñ́ Y onto another
smooth projective surface Y , we have that π is a isomorphism.

Similar to Theorem 3 we have the following result:

Proposition 10 (Factorization of birational morphism of surfaces). Let π :
X Ñ́ Y be a birational morphism between smooth surfaces. Then π is a com-
position of a finite number of blow-ups.

So, every smooth surface can be obtained from a minimal surface in its bira-
tional class by a sequence of blow-ups, in fact, by a finite sequence of blow-ups
because the Picard number increases by one in each blow-up. Now, given any
smooth surface X, we need to do the inverse operation of blow-up to find its
minimal surface. Thus, from the Castelnuono’s contractibility criterion (Propo-
sition 7) we have a algorithm for the MMP for surfaces.

4.1 Classical version of the MMP for surfaces

1) Start with a smooth projective surface X with Picard number ρ “ ρpXq ě
0.

2) If X does not contain a p´1q-curve, X is not the blowup of any smooth
surface and X is a minimal surface, stop.

3) If X contains a p´1q-curve, we use the Castelnuovo’s contractibility cri-
terion for blow it down. So, we get a birational morphism π : X Ñ́ X 1

with X 1 a smooth surface and ρpX 1q “ ρpXq ´ 1.

4) Replace X by X 1 and return to step 1).

Since the Picard number decreases by one in each step, this procedure ends after
a finite number of repetitions.

In the birational class of the rational surfaces, the minimal surfaces are
exactly the minimal rational surfaces: P2 and the F1ms (m ‰ 1). So, the minimal
surface in a birational class may not be unique.

Example 14 (Blow-up of P2 at two points). Let X be the blow-up of P2 at
two points p and q. Consider L the line passing through those points. Note
that X has three p´1q-curves. The exceptional divisors Ep and Eq of blow-up

of p and q respectively, and the strict transform of L, L̃. If we run the MMP
for X, we have three options of p´1q-curves to contract. If we first contract the
Ep curve (or Eq), the output of the program is the surface P2. But if we start

by contracting the L̃ curve, we get from the MMP the surface F0.

Note that the definition of a p´1q-curve uses the fact that the ambient variety
is a surface. So, the classical version of the MMP cannot be generalized to higher
dimensions easily.
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4.2 Introduction to the modern version of MMP for sur-
faces

Let us define some objects needed for the MMP (modern version).

Let X be a smooth surface, we can consider local algebraic coordinates
(or local analytic complex coordinates) x1, x2. Take f1, f2 P CpXq such that
Cpf1, f2q Ă CpXq is a finite algebraic extension. Given any g P CpXq, g ‰ 0, we
write formally s “ g ¨ df1 ^ df2 and call it a rational 2-form. We can compare
this rational 2-form to the volume element dx1 ^ dx2 as follows:

s “ g ¨ df1 ^ df2 “ Jg ¨ dx1 ^ dx2,

where J “ det
ˇ

ˇ

ˇ

Bfi
Bxj

ˇ

ˇ

ˇ
. Note that zeros and poles of J are well defined. So, we can

get a divisor from s. Given a prime divisor D on X, define VspDq :“ VJgpDq
and

divpsq “
ÿ

D prime divisor

VJgpDqD P DivpXq.

This divisor is a particular and important divisor on a surface X. Its divisor
class is frequently used in classification of surfaces.

Definition 13 (Canonical divisor of a surface). The canonical divisor or canon-
ical class of X is the divisor class KX “ divpsq where s is a 2-form.

It is a well-defined divisor class because two 2-form s, s1 are related by s “ hs1

where h P CpXq˚ and we have that divpsq “ divps1q ` divphq.

Example 15 (Canonical divisor for P2). Consider P2 with homogeneous co-
ordinates u, v, w. Let Uw “ pw ‰ 0q – A2 the open subset of P2 with lo-
cal coordinates x, y. Take s “ dx ^ dy. Now, if we look at the open sub-
set Uu “ pu ‰ 0q – A2 with local coordinates s, t; the coordinate change is
x “ 1{t P CpUuq – CpP2q and y “ s{t P CpUuq – CpP2q. We have that

J “ det

ˆ

dx
ds

dx
dt

dy
ds

dy
dt

˙

“
1

t3
.

Then s “ dx^dy “ 1
t3 ds^dt and KP2 “ divpsq “ ´3H, where H is a hyperplane

class.

Now, we will reformulate the MMP in terms of the canonical divisor. We
start by giving the following concepts.

Definition 14. Let D P DivpXq be a divisor on a smooth surface X. We say
that D is nef if D ¨ C ě 0 for every curve C Ă X.

Remark 3. LetD be an effective divisor on a smooth surfaceX. The arithmetic
genus papDq of D is defined by

papDq “ 1`
1

2
pKX `Dq ¨D.
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In particular, if C is a curve, papCq coincides with the dimension of the space
of rational 1-form. So, papCq ě 0. We also have that papCq “ 0 if and only if
C – P1. You can see [7, Section 1, Chapter IV] for more details.

The new notion of a “simplest model” will not be equivalent to the previous
one in the case of rational and ruled surfaces. But this notion can be generalized
in higher dimensions.

Definition 15 (Minimal model). We say that a smooth projective surface X
is a minimal model if KX is nef.

Remark 4. The canonical KP2 is not nef. In fact, KP2 ¨H “ ´3H2 “ ´3 ă 0.
Thus, the minimal surfaces are not necessarily minimal models. From remark
3 we have the following result and it implies that every minimal model is a
minimal surface.

Proposition 11. Let C be a curve on a smooth surface X. Then C is a p´1q-
curve if and only if KX ¨ C ă 0 and C2 ă 0.

We consider again N1pXq, the R-vector space of divisors of a smooth surface
X, or equivalently the space of curves. A subset N of any R-vector space V is
called a cone if 0 P N and N is closed under multiplication by positive scalars.
A subcone M Ă N is called extremal face if @u, v P N with u ` v P M , then
u, v P M . If M is an extremal face with dimension 1, we say that M is an
extremal ray.

Definition 16 (Mori cone). Let X be a smooth projective surface. Set

NEpXq “
!

ÿ

airCis|Ci Ă X is a curve, 0 ď ai P R
)

Ă N1pXq,

where rCis is the numerical class of Ci. It is a cone in N1pXq and its closure
NEpXq is called the Mori cone.

Any divisor D P DivpXq defines a linear function D : N1pXq Ñ́ R given
by rCs Þ Ñ́ D ¨ C where C is a curve on X (recall that N1pXq is generated by
the classes of the curves). We define NEpXqě0 :“ tx P NEpXq|D ¨ x ě 0u and
similarly NEpXq“0 and NEpXqă0. If an extremal face M Ă NEpXq such that
Mzt0u Ă NEpXq ă 0, we say that M is a D-negative extremal face.

The first step to the MMP is to contract some KX -negative extremal ray.
This is an analogue of contracting p´1q-curve in the classical version.

Definition 17. Let X be a smooth surface and R an extremal ray of NEpXq.
A morphism ϕR : X Ñ́ Y onto a normal projective variety Y with connected
fiber is a contraction of R if the following hold:

ϕRpCq for an irreducible curve C is a point if and only if rCs P R.

The next theorem is the analogue to the Castelnuovo’s contractibility cri-
terion (Proposition 7) and it asserts that the contraction of any KX -negative
extremal ray always exists. You can refer to [9, Theorem 1.28] for the proof.
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Theorem 8. Let X be a smooth projective surface and R Ă NEpXq a KX-
negative extremal. Then R “ Rě0rCs for some curve C Ă X with KX ¨ C ă 0.
Furthermore, the contraction ϕR of R exists and is one of the following type:

1q If C2 ă 0, then ϕR : X Ñ́ Y is the blow-u p of a smooth surface Y at
one point; ρpY q “ ρpXq ´ 1.

2q If C2 “ 0, then ϕR : X Ñ́ Y realizes X as a scroll (see definition 5)
over a smooth curve Y . C is a fiber of ϕR and ρpXq “ 2.

3q If C2 ą 0, then X – P2 and ϕR : X Ñ́ pt; ρpXq “ 1.

Definition 18. A morphism of the type 2q or type 3q in the previous theorem
is called Mori fiber space.

We already have the tools for describing the MMP.

1) Start with a smooth projective surface X with ρ “ ρpXq.

2) If KX is nef, X is a minimal model, stop.

3) If KX is not nef, pick a KX -negative extremal ray R Ă NEpXq and apply
Theorem 8.

4) If ϕR : X Ñ́ Y is the contraction with dimpY q ă 2, ϕR is a Mori fiber
space, stop.

5) If ϕR : X Ñ́ Y is the contraction with dimX “ 2, X is the blow-up of a
smooth surface Y at one point and ρpY q “ ρpXq ´ 1.

6) Replace X by Y and return to step 1q.

4.3 The MMP in higher dimensions

There is an intersection theory in higher dimensions. Let X be a smooth pro-
jective variety of dimension n. We have an intersection product resulting from
intersecting divisors and curves on X, where a divisor D on X is a formal sum
of irreducible closed subsets of X of codimension 1 (see 2.2). It is important
to mention that divisors and curves coincide only on surfaces. From rational
n-forms (defined in the same way as section 4.2) we obtain the canonical divisor
KX and it is nef if D ¨ C ě 0 for every curve C Ă X. The MMP (modern ver-
sion) can be extended to any dimension. Given a smooth projective variety X,
the first step is to ask if KX is nef. If KX is nef, X is a minimal model and we
stop. If KX is not nef, the task is to find a KX -negative extremal ray R which
can be contracted. If ϕR : X Ñ́ Y is its contraction we have two possibilities:

(a) dimX ă dimY , then we stop the program and call ϕR : X Ñ́ Y a
Mori fiber space, or

(b) dimX “ dimY then we replace X by Y .
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The hope is that by repeating the procedure one ends up either with a variety
where KX is nef (a minimal model) or with a variety of smaller dimension. We
have some problems. The first one is that in case (b) above the variety Y may
not be smooth, so we must allow varieties to acquire singularities. In higher
dimensions, the analogue of Theorem 8 is the Contraction Theorem (see [9,
Theorem 3.7]). A second problem is that this theorem is not valid for an arbi-
trary singular variety, then we must consider varieties with special singularities
and specific properties of KX . The contraction ϕR of a KX -negative extremal
ray R in such varieties can be of three types, refining the classification of ϕR
into types (a) and (b) above:

(1) Mori fiber space if dimpY q ă dimpXq and the exceptional locus of ϕR (i.e.
the points of X where ϕR is not a local isomorphism) is X.

(2) Divisorial contraction if ϕR is a birational morphism and its exceptional
locus has codimension 1. This is, ϕR contracts an unique divisor prime.
In this case ρpY q “ ρpXq ´ 1.

(3) Small contraction if ϕR is a birational morphism and its exceptional locus
has codimension at least 2.

In situation (3), the variety Y has non-allowed singularities and so we cannot
replace X by Y . In this case, instead of contracting the KX -negative extremal

ray R, we perform a pseudo-isomorphism ψ : X X` (see definition 19)

that substitutes the KX -negative extremal ray R by a KX`-positive one R`

and gives a map ϕ`
R` : X` Ñ́ Y from ϕ such that the following diagram

commutes.

X X`

Y

ψ

ϕR ϕ`

R`

Therefore, we replace X by X` and continue with the program. Now a third
problem appears, we cannot guarantee that the program stops. Whenever we
replace the variety we have the three possibilities above. Every time we perform
a divisorial contraction the Picard number drops by one. Thus we have only a
finite sequence of divisorial contractions. The Picard number remains the same
for pseudo-isomorphisms and we cannot guarantee that a sequence of pseudo-
isomorphisms ends after finitely many steps. In fact, at present this is an open
problem and the most important one of the MMP, known by Termination of
flips. A good reference for more details is [1] and for a rigorous study of the
MMP you can refer to [9].

A simple example of a divisorial contraction is the blow-up of a surface at
one point. Now, let us give a formal definition of a pseudo-isomorphism.

Definition 19 (Pseudo-isomophism). A birational map f : X ´´Ñ Y between
projective varieties is called pseudo-isomorphism if it is an isomorphism in
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codimension 1, i.e., there exist open subsets U Ă X and V Ă Y such that
XzU and Y zV have codimension ě 2 and f |U : U

„
´́Ñ V . In this case we use

f : X Y .

We can easily verify that every pseudo-isomorphism between surfaces is an
isomorphism. Moreover, contractions of KX -negative rays in the MMP for
surfaces are either blow-downs or Mori fiber spaces. Thus, in this case we do
not have small contractions.

5 The Cremona group in higher dimensions

In this section we discuss the results due to H. Hudson and I. Pan mentioned
in the introduction and explore the Sarkisov program for higher dimensions.

5.1 Generators of the Cremona group

As we already mentioned in the introduction, Hilda Hudson’s Theorem states
that there is no Noether-Castelnuovo Theorem in higher dimensions.

Theorem 9 (Hilda Hudson’s Theorem). For n ě 3, BirpPnq cannot be gener-
ated by elements of bounded degree.

A recent and different proof of this theorem was given by Ivan Pan in 1999.
In fact he proved a more precise result (Theorem 10). Let us introduce a con-
struction of birational self-maps of Pn from birational self-maps of Pn´1.

Let P,Q P Crx0, ..., xns and R1, ..., Rn P Crx1, ..., xns be homogeneous poly-
nomials such that degpP q “ degpQRiq for i “ 1, ..., n. We define the following
rational maps:

ψP,Q,R : Pn ´´Ñ Pn, ψP,Q,R “ pP : QR1 : ... : QRnq

ψR : Pn´1 ´´Ñ Pn´1, ψR “ pR1 : ... : Rnq

Assume that d “ degpP q, l “ degpQq, d ě l`1 ě 2 and P,Q are polynomials
such that P “ x0P1`P2 and Q “ x0Q1`Q2 with P1, P2, Q1, Q2 P Crx1, ..., xns
of degree d ´ 1, d, l ´ 1, l, respectively and pP1, Q1q ‰ p0, 0q. We have that
ψP,Q,R is birational if and only if so is ψR is (see [11, Lemma 2]). Note that the
map ψP,Q,R contracts the hypersurface ZpQq Ă Pn to the point p1 : 0 : ... : 0q.
Conversely, for any hypersurface ZpQq Ă Pn of degree l with a point p of
multiplicity ě l´ 1, we can find a birational self-map of Pn that contracts it to
a point (see [11, Corollary 3]).

Theorem 10 (Ivan Pan’s Theorem). For n ě 3. Any set of group generators
of BirpPnq contains uncountably many elements of unbounded degree.
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We will now give a sketch of the proof.

Proof. First, the set of hypersurfaces that are contracted by a birational
self-map of Pn is finite. Now, consider a family of hypersurfaces Xi of degree
l “ 3 given by the equation Qipx1, x2, x3q “ 0, where every equation Qi “ 0
defines a smooth curve CQi of degree l on tx0 “ x4 “ ... “ xnu. Note that Xi

is birationally equivalent to Pn´2ˆCQi and, Xi is birationally equivalent to Xj

if and only if CQi
is isomorphic to CQj

. Since the set of isomorphism classes of
smooth cubics is a 1-parameter family (see [7, Chapter IV, Theorem 4.1] and
[7, Chapter IV, Proposition 4.6.1]), we have uncountably many hypersurfaces
such that no pair of them are birationally equivalent.

For each i, construct as above a birational map ψi which contracts Xi to
a point. We can check that if ϕ1, ..., ϕm are birational self-map of Pn and if
ϕ “ ϕm ˝ ... ˝ϕ1 contracts a hypersurface Y , then there exists i P t1, ...,mu and
a hypersurface Yi such that Yi is birationally equivalent to Y and ϕi contracts
Yi. Therefore, to generate BirpPnq one needs at least as many elements in the
set of generators as elements in the family of surfaces X 1is.

5.2 Sarkisov program

We will now turn our attention to smooth rational varieties. The outputs of the
MMP for smooth rational varieties are Mori fiber spaces.

Definition 20 (Rational variety). A variety X of dimension n is said to be
rational if it is birationally equivalent to Pn.

Given a smooth rational variety Z, from the MMP we obtain a Mori fiber
space X and a sequence of birational morphisms

ϕ : Z “ X0 Ñ́ X1 Ñ́ ... Ñ́ Xn “ X Ñ́ B.

However, neither X nor ϕ are unique. So, it is natural to study birational maps
between Mori fiber spaces in the same birational class. The Sarkisov program
of section 3.5 can be generalized to any dimension. In this case, the idea is to
factor birational maps between Mori fiber spaces into elementary links.

Analogous to the case of surfaces, we have four types of elementary links.

5.2.1 Sarkisov links

Suppose that X Ñ́ B and X 1 Ñ́ B1 are two Mori fiber spaces (sometimes we
write X{B instead of X Ñ́ B). A Sarkisov link χ : X ´´Ñ X 1 is of one of
four types:
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Z X 1 Z Z 1

X B1 X X 1

B B “ B1

I II

X Z X X 1

B X 1 B B1

B1 C

III IV

where the pseudo-isomorphism is a composition of flips, flops or
anti-flips (see [3]); the maps Z Ñ́ X and Z 1 Ñ́ X 1 are divisorial contractions;
and the maps B Ñ́ B1, B1 Ñ́ B, B Ñ́ C and B1 Ñ́ C are birational
morphisms with relative Picard number 1 (see [3]).

Note that the corresponding diagram of Sarkisov links for surfaces are:

F1 F1 Z Z

P2 P1 Fm Fm˘1

pt P1

I II
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F1 F1 P1 ˆ P1 P1 ˆ P1

P1 P2 P1 P1

pt pt

III IV

Theorem 11 (Sarkisov program). Every birational map ϕ : X ´´Ñ X 1 be-
tween Mori fiber spaces X Ñ́ B and X 1 Ñ́ B1 is a composition of Sarkisov
links.

X “ X0 X1 ¨ ¨ ¨ Xk “ X 1

B “ B0 B1 Bk “ B1

ψ1

ϕ

ψ2 ψk

The algorithm for this program is the same as described in Theorem 7. We
start by assigning ϕ a Sarkisov degree s.degpϕq and searching a link ψ1 such
that s.degpϕ ˝ ψ´1

1 q ă s.degpϕq. We continue inductively with ψ1 in place of ϕ.

Consider a birational map ϕ : X ´´Ñ X 1 between Mori fiber spaces X Ñ́

B and X 1 Ñ́ B1. Its decomposition into Sarkisov links is not unique in general
and two such decompositions define a relation (see definition 21) in the Sarkisov
program. If

ϕ : X{B “ X0{B0 ´´Ñ X1{B1 ´´Ñ ¨ ¨ ¨ ´´Ñ Xk{Bk “ X 1{B1

and

ϕ : X{B “ X̃0{B̃0 ´´Ñ X̃1{B̃1 ´´Ñ ¨ ¨ ¨ ´´Ñ X̃l{B̃l “ X 1{B1

are two different decomposition of ϕ, then

X{B “ X0{B0 ´´Ñ ¨ ¨ ¨ ´´Ñ Xk{Bk – X̃l{B̃l ´´Ñ ¨ ¨ ¨ ´´Ñ X̃0{B̃0 “ X{B

is an element of AutpXq which commutes with the map X Ñ́ B.

Definition 21 (Relations). A non-trivial relation in the Sarkisov program is a
composition of k ą 2 Sarkisov links

ψk ˝ ¨ ¨ ¨ ˝ ψ1 P AutpX1q (2)

which define an automorphism of Xk`1{Bk`1 “ X1{B1 that commutes with the
map X1 Ñ́ B1, where ψi : Xi{Bi ´´Ñ Xi`1{Bi`1.

Definition 22 (Elementary relations). The relation (2) is elementary if no
proper subchains of links forms a relation and ψi`1 ˝ ψi is not a Sarkisov link,
for all i “ 1, ..., k ´ 1.
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6 Proof strategy for Theorem 1

Finally, we will study Theorem 1 focusing on the techniques and tools which
were used in its proof. As we have seen in Theorem 5, the Jonquière maps
generate the Cremona group BirpP2q. Theorem 1 says that this statement does
not hold in higher dimensions.

We are interested in constructing a surjective group homomorphism from
BirpPnq to Z{2Z. The natural way for constructing a group homomorphism
f : G Ñ́ H is to take a set of generators of G and define its image by f in H,
so that the relations between such generators are preserved. So far, a specific
set of generators of BirpPnq is not known for n ě 3. By Theorem 11, we know
that every birational self-map of Pn is a composition of Sarkisov links. However,
these links do not generate BirpPnq, in fact, the Sarkisov links do not belong
to the Cremona group. This motivates us to consider the set BirMoripPnq
of birational maps between Mori fiber spaces birational to Pn. Note that two
elements ϕ,ϕ1 P BirMoripPnq, ϕ : X ´´Ñ Y and ϕ1 : X 1 ´´Ñ Y 1, can only
be composed if Y “ X 1. Therefore, BirMoripPnq is not a group but has a
groupoid structure.

Definition 23 (Groupoid). Let G be a set endowed with a product map

G2 Ñ́ G, pg, hq Þ Ñ́ gh,

where the set G2 Ă G ˆ G is called the set of composable pairs, and an inverse
map

G Ñ́ G, g´1,

such that for all f, g, h P G the following conditions hold:

i. pg´1q´1 “ g;

ii. If pg, hq, ph, lq P G2, then pgh, lq, pg, hlq P G2 and pghql “ gphlq;

iii. pg´1, gq P G2 and if pg, hq P G2, then g´1pghq “ h;

iv. pg, g´1q P G2 and if pl, gq P G2, then plgqg´1 “ l.

Example 16. Let X Ñ́ B be a Mori fiber space. The set of birational
maps between Mori fiber spaces birational to X, denoted by BirMoripXq is a
groupoid. Note that BirpXq is a subgroupoid of BirMoripXq.

The next result gives a representation of groupoid BirMoripXq.

Theorem 12. Let X Ñ́ B be a Mori fiber space.

i) The groupoid BirMoripXq is generated by Sarkisov links and automor-
phisms.

ii) Any relation between Sarkisov links in BirMoripXq is generated by ele-
mentary relations.
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For a proof you can refer to [3, Theorem 4.28]. In particular, this theorem
holds for X “ Pn.

The strategy of the proof. Let n ě 3. Let us describe how we can
obtain the group homomorphism BirpPnq Ñ́ Z{2Z from Theorem 1. From
Sarkisov program and Theorem 12 we have that any birational map between
two Mori fiber spaces is a composition of Sarkisov links and the relations between
Sarkisov links are generated by elementary relations. So, we proceed to con-
struct the groupoid BirMoripPnq where Sarkisov links and elementary relations
give it a representation. The group BirpPnq is a subgroupoid of BirMoripPnq.
Now, we construct a groupoid homomorphism from BirMoripPnq to a free
product of Z{2Z whose restriction to BirpPnq gives the desired group homo-
morphism. The automorphisms and every Sarkisov link are mapped to identity
(except some special links) by the groupoid homomorphism and the elementary
relations are preserved. Restricting this groupoid homomorphism to BirpPnq
and by Theorem E in [3], we have a surjective group homomorphism

BirpPnq ˚
J
Z{2Z,τ

where the indexing set J has the same cardinality as C. By construction, auto-
morphisms of Pn are sent onto the identity. It is possible to construct τ so that
the Jonquière maps are in its kernel. For that, a qualitative description of the
decomposition of the Jonquière maps by elementary links is used. So,

|τpGq| ď |S| ă |J |,

therefore there exists some factor Z{2Z such that it is not in τpGq. Thus, we
make the composition of τ with the projection onto this factor and therefore we
achieve the desired homomorphism.

You can see more details about the tools used and the complete proof in [3].
As consequence of Theorem 1, the group BirpPnq is not simple, this result was
not known until then for n ě 3.
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Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathe-
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